
Towards a novel meta-modeling approach

for dynamic multi-level instantiation

Zoltan Theisz Gergely Mezei

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

zoltan.theisz@gmail.com, gmezei@aut.bme.hu

Abstract. Instantiation is one of the core concepts of all current meta-modeling ap-
proaches and thus of all model-driven frameworks, nevertheless its semantics is left to
the discretion of the particular modeling methodology. This sloppiness often results
in various incompatibility and limitation issues. In this paper, we introduce a new,
dynamic, multi-level instantiation technique that precisely formalizes the essence of
instantiation. The dynamic nature allows the partial instantiation of certain meta-
elements, while keeping the rest of the elements at a higher abstraction level. Sup-
porting this level of �exibility is often required in complex IT systems e.g. in the
telecommunication domain. The described solution is not limited by implementation
details, it can be used as a common platform for any modeling tool.

Keywords: Meta-modeling; Instantiation; Abstract State Machines

1 Introduction

In model-based development techniques, instantiation is the very essence of any
meta-modeling technique: by de�nition, the instantiation operation de�nes the
semantical linkage between the meta-modeling and the modeling layer. The
exact nature of the instantiation process has a dominant in�uence on the �exi-
bility, the expressiveness and the limitations of the resulting modeling approach.
If the operation of instantiation is not properly and precisely de�ned, the var-
ious modeling frameworks may tend to interpret it di�erently and thus they
may become incompatible. It is usually taken for granted � at least in the
practice � that instantiation equals to the well-known relation between classes
and objects. The similarity may look obvious, but they must not be treated
as being equivalent since their disparity becomes easily noticeable e.g. in the
case of multi-level instantiation of MOF [1] [2]. We can distinguish two kinds of
instantiations: shallow instantiation means that information is de�ned on the
nth modeling level and it is used at the immediate instantiation level, while
deep instantiation allows de�ning information on the nth modeling level and
use it on the (n+x)th (x > 0) modeling level [3]. Although multi-level modeling
solutions are getting more and more popular, deep instantiation methods are
rarely used. The core of the issue is due to the fact that if each layer has to be
instantiable, then there must also be a means of being able to add new attribute

Towards a novel meta-modeling approach. . . Zoltan Theisz and Gergely Mezei

and operation de�nitions to the model de�nition. There are two options to sup-
port it: one can either bring the source of this information along through all
model layers (and use it wherever it may be needed), or one can add the source
of that information directly to the model element where it is actually used. In
practice, the concept of potency notion and dual �eld notion [3] [4] were intro-
duced as such solutions. However, this level of �exibility does not always su�ce.
For example, the on-going modernization of the state-of-the-art telecom tech-
nology will propel the changes far beyond our current imagination.The future
de�nitely lies in the Cloud and the whole telecom superstructure will become
totally software driven, while the hardware infrastructure will purely consist of
programmable network fabrics of routers and switches and clusters of software
de�ned data centers of virtually in�nite processing capacity. In this scenario,
scheduled and gradual instantiation of information models are necessary. Under
gradual instantiation we mean that we concertize (instantiate) some attributes
and operations of the meta de�nitions, but not necessarily all of them in one
single go. This added dynamism in the instantiation process is the main reason
why we do refer to our approach as dynamic instantiation, which establishes a
well-regulated dynamic switch between meta levels. The paper describes in a
solid, mathematically precise way this new instantiation approach, which is a
delicate combination of a model representation framework and a corresponding
instantiation mechanism. In the next sections, �rstly, an overview is given, then
the formal de�nition is presented followed by a few simple examples. Finally,
conclusions are drawn and future directions are highlighted.

2 Dynamic instantiation

In general, the following idea is used when talking about instantiation: let us
take a meta de�nition and process it by instantiating all the de�ned items. If
we have three attribute de�nitions, then we are, by de�nition, forced to in-
stantiate all of them. We must not say, for example, that we instantiate only
two and leave the last one alone. But, is it really useful, in all practical cases,
to follow that rigid instantiation rule without gaining anything in return? In
meta-model based Cloud software implementations, instantiation often means
concretization. More precisely, services de�ned at higher modeling layers be-
come concrete service types and concrete service instances on lower levels. For
example, a service may be de�ned only as a template � a domain speci�c recipe
� and as such it tends to have free variables. Obviously, one has to create
concrete implementations of that service and consequently all necessary free
variables must be gradually substituted for later executability. Hence, the inef-
�ciency of forced substitution of all free variables in one single go may need to
be superseded by a more pragmatic behavior: the creation of hierarchies of ser-
vice templates and the gradual substitution of free variables in a well-scheduled
manner. In essence, it would mean to instantiate only some part of the meta
de�nition and leave the rest of it as "free variables� for later concretization. In
our dynamic instantiation approach, we permit the transfer of meta de�nitions

Zoltan Theisz and Gergely Mezei Towards a novel meta-modeling approach. . .

to the next level without full instantiation. This behavior is somewhat similar
to the potency notion-based methods where it is also explicitly speci�ed that
the instantiation information is there, but we would like to use it only later on
a di�erent modeling layer. Also, our instantiation di�ers, by its very nature,
from usual inheritance, although inheritance relations can be rede�ned by it as
well. In essence, our instantiation idea allows the holistic manipulation of multi
meta-layers and therefore we can describe also such modeling scenarios with
"free variables� that are beyond the reach of inheritance due to its constrain-
ment to one single modeling layer. Moreover, our approach makes it possible to
add new attributes to existing model elements, or remove unwanted attributes,
provided their meta de�nition has been provisioned for this later conretization.
The instantiation process also enforces type constraints by e.g. specifying the
instance value(s) of selected attribute(s). To sum up, our dynamic instantiation
takes advantage of a permissive instantiation approach, whereby attributes are
not enforced to be always instantiated in a single go. However, we did not want
to lose completely the concretization feature, therefore, we do insist on instanti-
ating at least one "free" attribute at a time whenever a model element is to be
instantiated. In the sequel, the precise mathematical model of these ideas will
be formalized in their full exactness.

3 Formal syntax

In the following, we present a formalization of our dynamic instantiation tech-
nique. The formalization is referred to as Dynamic Multi-Layer Algebra (DMLA)
and it is based on Abstract State Machines (ASM, [5]). Basically, an ASM for-
malism de�nes an abstract state machine and a certain set of connected func-
tions that specify the transition logic between the states. DMLA consists of
three major parts: The �rst part de�nes the modeling structure and shows the
ASM functions operating on this structure. The second part is an initial set
of constructs, built-in model elements (e.g. built-in types) that is necessary to
use the basic structure in practice. This second part is also referred to as the
bootstrap of the algebra. Finally, the third part de�nes the instantiation mech-
anism. We have decided to separate the �rst two parts because the algebra
is self-contained in structure and can work with di�erent bootstraps. More-
over, the bootstrap selection seeds the concrete meta-modeling capability of our
generic DMLA.

3.1 Data representation

In our approach, the model is represented as a Labeled Directed Graph. Each
model element such as nodes and edges can have labels. Attributes of the model
elements are represented by these labels. Since the attribute structure of the
edges follows the same rules applied to nodes, the same labeling method is used
for both nodes and edges. Moreover, for the sake of simplicity, we use a dual

Towards a novel meta-modeling approach. . . Zoltan Theisz and Gergely Mezei

�eld notation in labeling that represents Name/Value pairs. In the following,
we refer to a label with the name N of the model item X as XN .

We de�ne the following labels: (i) XName (The name of the model element),
(ii) XID (A globally unique ID of the model element), (iii) XMeta (The ID of the
metamodel de�nition), (iv) XCardinality (The cardinality of the model element,
it is used during instantiation as a constraint. It determines how many instances
of the model element may exist in the instance model.), (v) XV alue (the value
of the model element (used in case of attributes only as described later), (vi)
XAttributes (A list of attributes)

Due to the complex structure of attributes, we do not represent them as
atomic data, but as a hierarchical tree, where the root of the tree is always
the model item itself. Nevertheless, we handle attributes as if they were model
elements. More precisely, we create virtual nodes from them: these nodes do
not appear as real (modeling) nodes in diagrams but � from the algebra's formal
point of view � they behave just like usual model elements. This solution allows
us to handle attributes and model elements uniformly and avoid multiplication of
labeling and ASM functions. Since we use virtual nodes, all the aforementioned
labels are also used for them, e.g. attributes have a name. Moreover, they may
also have a value. This is the reason why we have de�ned the Value label. In
order to avoid any misunderstanding, in the following, we are going to use the
word entity exclusively if we refer to an element which has the label structure
de�ned as discussed above. After the structure of the modeling elements has
been introduced, we can now de�ne the Dynamic Multi-Layer Algebra itself.

De�nition 1. The superuniverse |A| of a state A of the Dynamic Multi-Layer
Algebra consists of the following universes: (i) UBool (containing logical values
{true/false}), (ii) UNumber (containing rational numbers {Q} and a special sym-
bol representing in�nity), (iii) UString (containing character sequences of �nite
length), (iv) UID (containing all the possible entity IDs), (v) UBasic (containing
elements from {UBool ∪ UNumber ∪UString ∪UID}).

Additionally, all universes contain a special element, undef, which refers
to an unde�ned value. The labels of the entities take their values from the
following universes: (i) XName (UString), (ii) XID (UID), (iii) XMeta (UID), (iv)
XCardinality ([UNumber,UNumber]), (v) XV alue (UBasic), (vi) XAttrib (UID[]).

Note that for the sake of simplicity we model the cardinality as a pair of
lower and upper limits. Obviously, this representation could be easily extended
to support ranges (e.g. �1..3�) as well. The label Attrib is an indexed list of IDs,
which refers to other entities. Now, let us have a simple example:

Person_ID = 12, Person_Meta= 123, Person_Cardinality = {0, inf},

Person_Value = undef, Person_Attrib = []

The de�nition formalizes the entity Person with its ID being 12 and the ID of its
metamodel being 123. Note that in the algebra, we do not specify that the universe of
IDs uses the universe of natural numbers, this is only a possible implementation here
for sake of pure illustration purposes. Of course, we could have also used, for example,
URIs, or GUIDs for achieving the same goal. The only requirement imposed on the
universe is that it must be able to identify its elements uniquely. One can instantiate

Zoltan Theisz and Gergely Mezei Towards a novel meta-modeling approach. . .

any number of the Person entity in the instance models and it has no components
and value de�ned. In the sequel, for the sake of easier reading, we are going to use a
more compact representation with equal semantics (Note both tuples and lists share
the same square bracket notation):

["Person", 12, 123, [0, inf], undef, []].

3.2 Functions

Functions are used to de�ne rules to change states in ASM. In DMLA, we rely on
shared and derived functions. The current attribute con�guration of a model item
is represented using shared functions. The values of these functions are modi�ed
either by the algebra itself, or by the environment of the algebra (for example by the
user). Derived functions represent calculations, they cannot change the model, they
are only used to obtain and restructure existing information. Thus, derived functions
are used to simplify the description of the abstract state machine. The vocabulary

∑
of the Dynamic Multi-Layer Algebra formalism is assumed to contain the following
characteristic functions:

• Name(UID): UString � The function takes an ID of an entity and returns the
name of the element. If no model element is de�ned by the given ID the function
returns undef.

• Meta(UID): UID � The function takes an ID of an entity and returns the ID of
the meta de�nition of the element. If no model element is de�ned by the given
ID the function returns undef.

• Card(UID): [UNumber,UNumber] � The function takes an ID of an entity and
returns the minimum and maximum cardinality of the element as an array of two
elements. If no model element is de�ned by the given ID the function returns
undef.

• Attrib(UID, UNumber): UID � The function takes an ID of an entity and an
index and returns the attribute of the entity at the given index position. If no
model element is de�ned by the given ID or no attribute is de�ned at the index
position the function returns undef.

• Value(UID): UBasic � The function takes an ID of an entity and returns the
data stored in the Value label of the entity. If no model element is de�ned by
the given ID the function returns undef.
Note that the functions are not only able to query the requested information,
but they can also update the information based on the usual ASM syntax. For
example, we can update the meta de�nition of an entity by assigning a value to
the Meta function: Meta(IDConcreteObject) : = IDNewMetaDefinition

• Contains(UID,UID): UBool � The derived function takes an ID of an entity
and the ID of an attribute and checks whether the entity contains the attribute
directly or indirectly. If there are no entities de�ned by the given IDs the
function returns false.

• DeriveFrom(UID,UID): UBool � The derived function checks whether the en-
tity identi�ed by the �rst parameter is an instantiation of the entity speci�ed
by the second parameter. The function checks along all meta levels, not just
one above, thus, for example the meta-meta element can also be checked by the
function. If no of these entities is found the function returns false.

Towards a novel meta-modeling approach. . . Zoltan Theisz and Gergely Mezei

The de�nitions of the functions are the following:

Name (ID) :

{
name, if ∃X : XID = ID ∧XName = name

undef, otherwise

Meta (ID) :

{
YID, if ∃X,Y : XID = ID ∧XMeta = YID

undef, otherwise

Card (ID) :

{
[low, high], if ∃X : XID = ID ∧XCardinality = [low, high]

undef, otherwise

Attrib (ID, Idx) :

{
attrib, if ∃X, i : XID = ID ∧XAttrib [Idx] = attrib

undef, otherwise

Here we assume that the Attrib labels return undef when the index is greater than or
equal to the number of stored entities.

V alue (ID) :

{
val, if ∃X : XID = ID ∧XV alue = val

undef, otherwise

Contains (ID1, ID2) :

true, if ∃c, idx : c = Attrib (ID1, idx)∧

(cID = ID2 ∨ Contains (cID, ID2))
false, otherwise

DeriveFrom (ID1, ID2) :

true, ∃x, y : xID = ID1 ∧ ∃y : yID = ID2 ∧

(xMeta = y
∨

DeriveFrom(xMeta, y))
false, otherwise

3.3 The bootstrap mechanism

The aforede�ned functions make it possible to query and change the model. However
based only on these constructs, it is hard to use the algebra (especially in the case of
a self-describing multi-level architecture) due to the lack of basic, built-in constructs.
For example, entities are required to represent the basic types, otherwise we cannot use
the label Meta when it refers to a string, because the label is supposed to take its value
from UID and not from UString. We need to de�ne the base constructs somewhere
inside or outside the core algebra.

Obviously, there is more than one �correct� solution to de�ne this initial set of
information. For example, we can restrict the usage of basic types to an absolute
minimum, or we can extend them by allowing implementation speci�c types, such as
DateTime to simplify the usage. In this paper, we present a basic set of constructs,
referred to as the bootstrap of the algebra. The bootstrap provides a practically
useful minimal set of constructs however this set can be freely modi�ed later to adapt
to speci�c situations and one can still get a working algebra. The bootstrap has two
main parts: basic types and principal entities.

Before describing the bootstrap in detail, it is worth mentioning that the bootstrap
and the instantiation mechanism cannot be de�ned independently of each other. When
an entity is being instantiated there are constructs to be handled in a special way. For
example, we can check whether the value of an attribute violates the type constraint
of the metamodel only if the algorithm can �nd and use the basic type de�nitions.

Zoltan Theisz and Gergely Mezei Towards a novel meta-modeling approach. . .

3.3.1 Basic types

The built-in types of the Dynamic Multi-Layer Algebra are the following: Basic, Bool,
Number, String, ID. All types refer to a value in the corresponding universe. In the
bootstrap, we de�ne an entity for each of these types, for example we create an entity
called Bool, which will be used to represent Boolean type expressions. Types Bool,
Number, String and ID are inherited from Basic.

3.3.2 Principal entities and annotation attributes

Besides the basic types, we also de�ne three principal entities: Attribute, Node and
Edge. They act as the root meta elements of attributes, nodes and edges, respectively.
All three principal entities refer to themselves by meta de�nition (more precisely, they
are self-referring among themselves). Thus, for example, the meta of Attribute is the
Attribute entity itself.

We should also mention that attributes are not only used as simple data storage
units, but also to create annotations, which are to be processed by the instantiation.
Similarly to basic types, we can de�ne special attributes with speci�c meaning. By
adding these special attributes to entities, we can �ne-tune their handling. We refer
to these attributes as annotation attributes from now on. We de�ne three annotation
attributes: AttribType, Src and Trg.

AttribType is used as a type constraint to validate the value of the attribute in the
instances. The Value label of AttribType speci�es the type to be used in the instance
of the referred attribute. Using AttribType and setting its Value �eld is mandatory if
the given attribute is to be instantiated. AttribType is only applied for attributes.

Src and Trg are used both as type constraints and data storage units to store the
source and target node of an edge, respectively. The constraint part restricts which
nodes can be connected by the edge, while the data storage contains its current value.
The constraint is expressed by AttribType, while the actual data is stored in the Value
�eld. This is only applied for edges.

In the following, we illustrate the concepts by a few simple examples. For the sake
of legibility, we rely on the notation ID_Attribute to refer to the ID of the attribute
and similarly to other entities.

3.3.3 Simple attribute

Our �rst example is rather simple, we de�ne an attribute Age:

["Age", ID_AgeAttribute, ID_Attribute,[1,1], undef,

[["AgeType",ID_AgeType,ID_AttribType,[0,1], ID_Number,[]]]

]

Age refers to ID_Attribute as its meta de�nition. Moreover, it has an entity (AgeType)
as a subattribute. AgeType is an instance of the annotation attribute AttribType. It
has been added to Age as a type constraint on the value of the instances of Age. The
type constraint refers to ID_Number expressing that we can specify the age as a number
as it is shown in the instance of Age:

["Age", ID_ConcreteAgeAttrib, ID_AgeAttribute, [1,1], 23,[]]

Towards a novel meta-modeling approach. . . Zoltan Theisz and Gergely Mezei

3.3.4 Complex attribute

The second example describes a complex data consisting of several �elds:

["Name", ID_NameAttribute, ID_Attribute, [1,1], undef, [

["NameType",ID_NameType,ID_AttribType, [0,1], ID_ComplexName, []]

]]

As it can be seen, we specify that the value of this attribute is a custom type (Com-
plexName). The de�nition of the referred type is the following:

["ComplexName", ID_ComplexName, ID_Attribute, [1,1], undef, [

["FirstName", ID_FirstName, ID_Attribute, [1,1], undef, [

["FNType",ID_FNType, ID_AttribType, [0,1], ID_String,[]]

]],

["LastName", ID_LastName, ID_Attribute, [1,1], undef, [

["LNType", ID_LNType, ID_AttribType, [0,1], ID_String, []]

]]]]

In ComplexName, we de�ne �elds (FirstName, LastName) as nested attributes with
their own type. By instantiating Name, we can obtain the following for example:

["Name", ID_Name, ID_NameAttribute, [1,1], ID_ConcreteName, []]

["ConcreteName", ID_ConcreteName, ID_ComplexName, [1,1], undef, [

["FirstName", ID_FirstName2, ID_FirstName, [1,1], "John", []],

["LastName", ID_LastName2, ID_LastName, [1,1], "Smith", []]

]]

On this instance level, we have an instance of ComplexName that is referred to from
Name. In Concrete Name, we instantiate both the FirstName and the LastName
attributes and set their values.

3.3.5 N-layer instantiation

DMLA provides two techniques to support n-layer attributes: transferring the at-
tributes and instantiating them. Transferring an attribute means that the de�nition
is copied from the meta-type to the instance object. No modi�cation is allowed, since
copy means in this context that we re-use the entity from the meta type. In contrast,
when an attribute is instantiated, it becomes more concrete, for example, its value can
be set (as already explained in the previous examples). Let us illustrate the di�erence
on a simple example. We de�ne a type Person with an attribute Aunt and add a type
constraint enforcing that the value of Aunt must be of type Person.

["Person", ID_Person, ID_Node, [0, inf], undef, [

["Aunt", ID_Aunt, ID_Attribute, [0,2], undef, [

["DType",ID_DType,ID_AttribType,[0,1], ID_Person,[]]

]]]

When instantiating the type Person, we can decide to transfer the attribute Aunt
to the next level without instantiating it. This allows us to specify, concretize the
information stored in Aunt later. In this case, we can get an instance as follows:

Zoltan Theisz and Gergely Mezei Towards a novel meta-modeling approach. . .

["JakeSmith", ID_JakeS, ID_Person, [1, 1], undef, [

["Aunt", ID_Aunt, ID_Attribute, [0,2], undef, [

["DType",ID_DType,ID_AttribType,[0,1], ID_Person,[]]

]]]]

Note that the attribute Aunt is not a clone of the original Aunt, but they are the
same (as their ID shows). Obviously, instead of transferring the attribute, we can also
decide to instantiate it and create one instance of the attribute:

["JohnSmith", ID_JohnS, ID_Person, [1, 1], undef, [

["Aunt", ID_JohnAunt, ID_Aunt, [1,1], ID_JaneSmith, []]

]]

We can also omit the attribute, if the person does not have an aunt, since its minimum
cardinality allows us to do so:

["JaneSmith", ID_JaneS, ID_Person, [1, 1], undef, []]

However, the cardinality also allows us to create more than one Aunt instances in
Person entities. This is, where the �exibility of dynamic instantiation shows its value:
we can also say that we would like to instantiate only one Aunt attribute and keep
the other possible attribute instance for later use:

["JillSmith", ID_JillS, ID_Person, [1, 1], undef, [

["Aunt", ID_JillAunt, ID_Aunt, [1,1], ID_JaneSmith, []],

["Aunt", ID_AuntCopy, ID_Aunt, [0,1], undef, [

["DType",ID_DType,ID_AttribType,[0,1], ID_Person,[]]

]]]]

This is similar as if we had transferred the attribute, but its cardinality had to be
changed, therefore we cannot reuse the entity from the metamodel verbatim, so we have
created a new one instead. This new attribute is basically a clone of its meta de�nition,
but the ID, Meta and Cardinality labels have been modi�ed. By instantiating this
hybrid object we can create objects such as:

["MySelf", ID_MySelf, ID_JillS, [1, 1], undef, [

["Aunt", ID_JillAunt, ID_Aunt, [1,1], ID_JaneSmith, []]

["Aunt", ID_JillAunt2, ID_Aunt, [1,1], ID_JaneSmith2, []]

]]

We can also specify that from now on, we do not accept Persons in general as the value
of Aunt, but only a speci�c instance of the Person type. For example we can modify
our earlier example:

["JohnSmith", ID_JohnS, ID_Person, [1, 1], undef, [

["Aunt", ID_JohnAunt, ID_Aunt, [1,1], ID_JaneSmith, [

["DType2",ID_DType2,ID_DType,[0,1], ID_JaneS,[]]

]]]]

This de�nition recon�gures the attribute Aunt by adding a new type constraint to it.
From this point on, we can use only instances of the entity JaneSmith as the value in
the instances of the entity JohnSmith:

Towards a novel meta-modeling approach. . . Zoltan Theisz and Gergely Mezei

["MySelf", ID_MySelf, ID_JohnS, [1, 1], undef, [

["Aunt", ID_MyAunt, ID_JohnAunt, [1,1], ID_MyAunt, []]

]]

["MyAunt", ID_MyAunt, ID_JaneS, [1,1], undef, []]

Thus the entity MySelf can refer to a speci�c instance of JaneSmith, not to the type.
The same thread of thinking applies equally well to attributes which have cardinality
[0, inf], e.g. in the case of an alternative de�nition of type Person:

["Person", ID_Person, ID_Node, [0, inf], undef, [

["Relative", ID_Relative, ID_Attribute, [0,inf], undef, [

["DType3",ID_DType3,ID_AttribType,[0,1], ID_Person,[]]

]]]]

Here, di�erent kinds of relatives can be introduced later, such as children, uncles,
cousins etc. This �exibility through �late binding� of attribute type and value is one
of the main advantages of dynamic N-layer instantiation.

3.4 Instantiation

Based on the structure de�nition of the algebra and the bootstrap, we can represent
our models as states of the DMLA now. The next step is to de�ne an instantiation
operation that takes an entity and produces a valid instantiation of it. Instantiation
is rarely unambiguous, one can usually create several di�erent instances of the same
type without violating the constraints set by the meta de�nitions. Most functions of
the algebra are de�ned as shared, which means that they allow manipulating their
values also from the outside of the algebra. However, the functions do not validate
these manipulations because that would be a considerably complex task. In a practical
implementation of our proposed mechanism, such situations can be easily controlled
based on change noti�cation and a transaction handling policy. Nevertheless, it may
be possible that an invalid model de�nition occurs. Hence, in our approach, we distin-
guish between valid and invalid models, where validity checking is based on formulae
describing di�erent properties of the model. Therefore, in the following, we assume
that whenever external actors change the state of the algebra, the formulae are eval-
uated. The evaluation result is important indeed since instantiation must only work
on valid models. Therefore, the instantiation process is speci�ed via validation rules
(set solution) that ensure that if an invalid model may result from an instantiation
(a particular point solution), it is rejected and an alternative instantiation is selected
and retried.

Validation is based on several, more or less atomic formulae. Most of the formulae
take an Instance entity and a MetaType entity and they check whether the Instance
entity is a valid instance of the MetaType entity. The only exception, formula ϕMeta,
takes only one parameter and validates if the given entity has enough valid instances
according to the cardinality label. The formulae we rely on are the following:

• ϕLabelCheck: The Meta label of the Instance refers to the ID of MetaType.

• ϕAttribSrc: All attributes of the Instance must be a clone, a copy, or a valid
instantiation of an attribute of the MetaType. If it is a clone, then the same
entity is used in the Instance as in the MetaType. If it is a copy, then only the ID
and Cardinality labels can change. Attributes must not violate the cardinality
constraint de�ned by the meta de�nition.

Zoltan Theisz and Gergely Mezei Towards a novel meta-modeling approach. . .

• ϕEntityIns: Instance must always have at least one instantiated (sub)attribute,
or its value must be set.

• ϕV alueCheck: If a component is a direct or indirect instantiation of Attribute
and it has a value, then its meta de�nition must have an AttribType component
and the type of value must match the type de�ned by AttribType. The only
exception to this formula are attributes deriving from AttribType itself, for
which we validate the Value �eld against the Value of meta de�nition directly.

• ϕEdge: Each entity that is a direct, or indirect instantiation of Edge must have
Src and Target attributes, which must be a valid direct or indirect instantiation
of the appropriate attributes of Edge.

• ϕIsV alid:True, if all the other instance checker formulae (formulae with two
parameters) return true

• ϕMeta: The number of valid instances of the parameter entity does not violate
the cardinality constraint.

The meta de�nition describes the structure, a set of requirement, or in other words
the constraints the instance must conform to. As mentioned before, in most of the
cases, these constraints do not have a unique solution, but there are several ones. There
exist many options, decision points during a usual instantiation step. For example, if
we have an attribute, we can transfer it, or instantiate it, or we can set its value in
certain circumstances. Therefore, instantiation is not a procedure which has a simple
input parameter and produces the required instance object. It is rather similar to a
procedure that uses instructions as input where the instructions consist of a selector
and a bound action. For example, if we have a complex attribute, then a selector
can select one of its components and apply the action on the selected components.
The input of the instantiation algorithm is a set of such instructions and we apply
them one by one during the instantiation step. We model these instructions as a tuple
{λselector, λaction} with abstract functions. The function λselector takes an ID of an
entity as parameter and returns with a possibly empty list of IDs referring to the
selected entities. The function λaction takes an ID of an entity and applies an action
on it. We do not specify here which kind of actions λaction can execute. The only
limitation we set is that it must invoke only functions previously de�ned on the ASM.
As mentioned, the functions λselectorand λaction are abstract in nature, which allows
us to handle them as black boxes and do not have to specify their inner mechanisms
explicitly. Although this choice may seem a bit restrictive, we have intentionally
decided to follow this abstract approach because any concrete formalization such as
specifying a formal model for the selection and action languages would be too heavy
for the scope of this paper. Nevertheless, having acknowledged that limitation, we take
it for granted now that operations can be added to the bootstrap similar to attributes
and those operations can be shaped to specify selectors and actions. Hence, based on
the above two abstract functions, the instantiation algorithm can be de�ned as follows:

Algorithm 1 The instantiation algorithm

1: rule Instantiate(ID_SubjectEntity, Instructions)
2: for all λselector, λaction in Instructions do
3: for all SelectedEntity in λselector(ID_SubjectEntity) do
4: λaction(SelectedEntity)

Towards a novel meta-modeling approach. . . Zoltan Theisz and Gergely Mezei

4 Conclusion and future works

The motivation of the paper was to create a precise formal instantiation approach
providing a solid based for metamodeling environments and at the same time o�ering
a solution to the challenges of modern, multi-layer, dynamic IT systems. We have for-
mally introduced the new multi-level modeling approach addressing these challenges.
The approach relies on three theoretical building blocks: a precise structural represen-
tation based on ASM semantics, a generic bootstrapping mechanism which de�nes the
initial structural elements of the meta-modeling algebra, and a dynamic instantiation
process that abstractly speci�es the relevant validation formulae. The approach is
theoretically solid and practically easily implementable; hence, our intention is to use
it in the future as a potential framework for precise multi-level meta-modeling. The
main mechanisms of the approach were illustrated by a few simple examples.

We have several plans on how to continue this research. Our research directions
will target the detailed investigation of practical bootstrapping solutions, including
re�ned operations of the ASM semantics itself, and the elaboration of formal models
for the selection and action languages needed for any practical implementation of the
dynamic instantiation process. Also, we consider to apply DMLA to rede�ne legacy
instantiation concepts. On the practical side, we plan to use DMLA as a foundation
for the implementation and management of meta-model based Cloud service solutions
in the domains of distributed industrial automation, modern virtualized telecommu-
nications networks and cooperative mobile applications operating on individualized
any-media sources.

Acknowledgments

This work was partially supported by the European Union and the European So-
cial Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-
20120013) organized by VIKING Zrt. Balatonf�¹red.

References

[1] OMG, �Meta-object facility.� http://www.omg.org/mof/.

[2] OMG, �Mda - the architecture of choice for a changing world.�
http://www.omg.org/mda/.

[3] T. Atkinson, Colin; Kuhne, �The essence of multilevel metamodeling,� The Uni�ed
Modeling Language. Modeling Languages, Concepts, and Tools, 2001.

[4] T. Atkinson, Colin; Kuhne, �Rearchitecting the uml infrastructure,� ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 2002.

[5] Abstract State Machines: A Method for High-Level System Design and Analysis.
Springer-Verlag, 2003.

