
By multi-layer to multi-level modeling
Zoltán Theisz1 Sándor Bácsi2 Gergely Mezei2 Ferenc A. Somogyi2 Dániel Palatinszky2

evopro Systems Engineering Ltd.1

Department of Automation and Applied Informatics,
Budapest University of Technology and Economics2

Budapest, Hungary
zoltan.theisz@evopro.hu1

{sandor.bacsi, gergely.mezei, somogyi.ferenc, palatinszky.daniel}@aut.bme.hu2

Abstract—Multi-level modeling has a well-defined and com-
monly agreed on aim of avoiding any kind of accidental
complexity by the introduction of meta-levels. However, the
actual means of achieving this goal are left to the discretion
of the particular approach to decide on. Potency notion-based
clabjects provide a suitable trade-off in this regard, hence other
approaches tend to imitate these characteristics. Dynamic Multi-
Layer Algebra (DMLA) is such an alternative formal modeling
technique that has already been tested successfully against multi-
level challenges such as the MULTI 2018 workshop’s Bicycle
Challenge. Although DMLA has proved its merit, it has still
been lacking the capability of integrating object-oriented features
such as inheritance into its formalism. Therefore, in this paper,
we showcase one potential way of incorporating inheritance with
abstract entities into DMLA without having to relinquish any
of its formal precision such as self-validation or self-description.
The paper both describes our technical solution and illustrates it
through a model excerpt borrowed from the Bicycle Challenge.

Index Terms—Meta-modeling, Multi-level Modeling, Deep In-
stantiation, Inheritance, Abstract Class, Potency Notion

I. INTRODUCTION

Multi-level modeling is the common term widely used to
cover a plethora of meta-model based modeling approaches
with the shared goal to avoid the emergence of any kinds
of accidental complexity [1]. Accidental complexity may be
caused by not having applied meta-levels adequately either
during the model building process or in the resulted domain
models. In order to achieve this ambitious goal, the various
multi-level modeling approaches have successfully introduced
their particular understanding of the level concept. Moreover,
they combined levels with some well-established state-of-the-
art model building methodology. In many contemporary multi-
level modeling paradigms, the traditionally distinct concepts of
class and object have been succinctly fused into an inseparable
entity named clabject [2]. One of the major characteristics of
popular multi-level modeling methodologies is the capability
of successfully blending inter-level relations between clabjects
such as instantiation with intra-level relations among clabjects
such as inheritance. We believe that the particular way of
combining instantiation and inheritance in modeling is a clear
characterization of any modeling paradigm whether it can be
classified as multi-level or not.

In our research group, we started investigating the possi-
bility of creating a self-contained meta-modeling theory some
years ago. We aimed to critically reconsider the fundamentals

of state-of-the-art multi-level modeling approaches and to
build a new framework that could be applied as a multi-level
modeling approach without being anchored in any underlying
traditional modeling technique. The work of our research re-
sulted in Dynamic Multi-Layer Algebra (DMLA) [3], which is
a self-validating meta-modeling formalism relying on gradual
model constraining through its interpretation of the classi-
cal instantiation relation. Since our main research goal was
to create a self-validating meta-modeling framework, where
instantiation is only a means to reach that goal, we named
the approach multi-layer instead of multi-level. Nevertheless,
we had also tested the applicability of DMLA through multi-
level modeling requirements. During this evaluation process,
we had to realize that DMLA was not expressive enough by
its native features as a good candidate for a proper multi-level
framework. In fact, we had to realize that our abstraction han-
dling mechanisms were sometimes too restrictive for practical
multi-level use-cases due to the exclusive reliance on gradual
constraining via instantiation. We classified DMLA’s most
frequently applied modeling patterns by their direct application
to the Bicycle Challenge [4]. Here, it became obvious that
two of the most important multi-level features missing from
DMLA were (i) the correct handling of the inheritance relation
and (ii) the distinction between abstract and concrete entities.
Although we were able to come up with a list of the necessary
DMLA patterns in order to solve the challenge completely,
we had seen an ever-increasing gap between multi-layer and
multi-level expectations vis-a-vis model design as well.

In this paper, we intend to demonstrate that selected multi-
level modeling features can indeed be supported by DMLA.
Our target of such a feature demonstration is the incorpora-
tion of abstract classes and explicit inheritance into DMLA’s
standard Bootstrap. The key to the solution is a new notion
referred to as tuple-number, or t-number for short. Based on
the notion of t-number, the validation mechanisms of DMLA
can be extended and thus the goal is achievable. For the sake of
straightforward demonstration, we will rely on a model excerpt
borrowed from the Bicycle Challenge in order to explain the
proposed technical solution in DMLA.

The paper is organized as follows: in Section II we elabo-
rate on our motivation and introduce the technical challenge
inspired by our DMLA pattern-based solution of the Bicycle
Challenge. Then, Section III is dedicated to discuss the related

work in multi-level modeling. In Section IV, we shortly de-
scribe DMLA and also introduce our multi-level representation
of inheritance via abstract entities. Next, in Section V, we
describe our algorithm that can properly differentiate DMLA
entities which are needed only for purposes of multi-level
inheritance from those which represent genuine DMLA instan-
tiation through gradual constraining. Here, we also explain the
most relevant technical details of the algorithm, both on the
conceptual level and in pseudo code. Then, in Section VI, the
motivating example is presented again, however this time ex-
tended with the proposed solution. Finally, in Section VII, we
conclude the paper and also describe our future research plans
of applying similar strategies on other multi-level notions.

II. BACKGROUND

In this section, we present the background and motivation
behind our new notion. Before digging deeper into the field,
let us take a short look on instantiation and inheritance. The
pivotal point of multi-level modeling is the instantiation rela-
tion that connects the object to its class: the object represents
an instance, that is, an element of the set represented by the
class. Hence, some features of the class must be concretized
or constrained in order for the object(s) to implement the
instantiation relation to the class. Therefore, instantiation is a
vertical relation. On the contrary, inheritance acts among the
classes on the same abstraction level as a horizontal relation.
Also, note that inheritance is additive by their nature: the base
class definition can only be extended and cannot be restricted
by the inheriting classes (otherwise it would violate the Liskov
substitution principle). Therefore, inheritance tend to combine
features of the base class(es) the target class inherits from.

The MULTI Process Challenge [5] is the latest expectation
set of requirements a multi-level modeling framework must
satisfy. Being a commonly agreed challenge of the multi-
level community, it is a good starting point of our discussion.
Some parts of the challenge are worth mentioning in order
to support our motivation. For example, it is described in the
challenge that there are different kinds of gateways, i.e. and-
split, or-split, etc. Another requirement is to have initial and
final task types, which are specialized from the general task
type. Such requirements show that one of the main purposes
of relying on OOP-styled inheritance with abstract classes is
to build a taxonomy of the contained features. In the case
of gateways and process types, these features may become
attributes and/or operations of the corresponding clabjects.
Without the notion of t-number introduced in this paper, it is
difficult for DMLA to satisfy such requirements by its native
multi-layer instantiation formalism.

In general, popular multi-level modeling approaches cover
instantiation mainly by the concept of the potency notion,
where an integer number stands for the meta-level the clabject
is placed on [6]. When two clabjects are connected via
instantiation, the potency of the clabject in the role of the
class, must be greater by one than the one with the role of
the object. Also, concrete objects must always have potency
value zero, that is, they must be already fully concretized as

they cannot be further instantiated. However, when it comes to
inheritance, potency notion based approaches rely on standard
OOP-defined inheritance. Thus, the potency number of the
in-relation clabjects must be the same, while the rest of
the inheritance semantics is equivalent to usual MOF/UML
interpretation. One of the best practical implementations of the
two relations in consistent harmony can be found in DeepJava
[7].

Although, in many modeling domains, the above-mentioned
hybrid handling of both relations is fully satisfactory, there
are many practical domains, where a model must contain both
fully abstract classes and fully concrete objects at the same
time. In those situations, one must not assume that the abstract
class is there only because it has not been concretized yet. In
some cases, the abstract class purposefully stands for purely
abstract features of later concrete objects. For example, one
may think of an emerging feature within the abstract class,
which represents some computation on a group of objects
and thus may contain derived attribute(s) which must be
computed on the corresponding features of concrete objects.
Those abstract classes should not exist in the real world of
the technical domain. However, the abstract classes can play
a more than essential role to control the behavior of the
concrete objects. A very good example of that feature are the
query functions of the Bicycle Challenge which are used for
example, to calculate the average price for a bicycle model
type, e.g. Mountain bike.

When modelers build taxonomies on a particular abstraction
level, they usually prefer to rely on abstract classes as types
in order to introduce and/or reuse existing clabject features.
The requirements on the task types of the process challenge
are good examples of this phenomenon. Obviously, concrete
classes can be further instantiated into concrete objects as
the modeling goes towards the real domain objects. Hence,
if we follow any of the inheritance/instantiation paths from
the concrete objects upwards through their meta classes, there
will be eventually clabjects that are fully abstract and they are
directly related only to each other via inheritance. Hence, the
relationship paths from the very abstract clabjects downwards
to their fully concrete objects contain a potentially alternating
sequence of inheritance and instantiation relations.

As we mentioned, multi-level modeling aims to elimi-
nate any form of accidental complexity. Therefore, managing
abstraction through inheritance must also comply with this
principle. Although we can easily model many multi-level
modeling notions in DMLA by modeling patterns, as we
demonstrated in our solution of the Bicycle Challenge [4], we
had been still lacking standalone entities representing multi-
level notions (e.g. potency notion) in the standard Bootstrap.

With inheritance in place, DMLA entities which represent
abstract classes can be used as grouping constructs for other
entities which share some common features at a particular
abstraction level. Although the grouping facility of the ab-
stract classes is very appealing in the beginning, one will
have to face the consequences rather quickly. Namely, the
inheritance/instantiation graph of such a multi-level model in

DMLA will not be balanced. As an illustration, let us have a
quick look at a fragment of the Bicycle Challenge (Figure 1).
Note that we have simplified and slightly modified the model
for the sake of clarity. Only those parts of the entities are kept
that are necessary to illustrate the phenomenon.

BicycleEntity is the root of the tree. Component, on the left
hand side, is a fully abstract class. It does have inheriting
classes such as Wheel and Frame, and it gets through fur-
ther instantiation via Frame. However, Component itself does
not have any fully concretized objects. Nevertheless, it does
have an operation implementing the emergent feature, called
CountComponents, which counts all the concrete Component
instances such as for example RaceFrame. The query function
operates on the meta-level of Component.

If we follow the entities on the right hand side, we can
notice that BicycleEntity is eventually fully instatiated as we
go on. Hence, taking into account the whole model, we
will have an unbalanced tree of inheritence and instantiation
relations: one level of instantiation on the left, three levels
of instantiation on the right. The real technical challenge
for us is how to precisely define inheritance in a multi-level
consistent way so that DMLA’s model validation mechanism
can correctly distinguish inheritance and instantiation.

In order to put our technical solution into the right per-
spective, we had to study state-of-the-art multi-level modeling
research considering abstract clabjects and inheritance. Hence,
in the sequel, in Section III, we survey the various potency
based multi-level modeling approaches regarding their han-
dling of abstract clabjects in models, then, in Section IV, we
introduce our particular way of formalizing similar semantics
in DMLA’s self-validation framework.

III. RELATED WORK

Deep instantiation is usually achieved via the potency notion
[6]. The potency value is a number assigned to entities,
features and relationships and it represents the number of
levels the element has to pass before a value can be assigned
to it. As we already discussed in Section I, this approach uses
the concept of clabjects, which means that every entity has
a class (type) facet, and an object (value) facet. This makes
it possible to achieve deep instantiation, while also keeping
the process constrained, i.e. we cannot assign values on levels
where it is not allowed to.

Potency notion has proved itself to be a sound technique that
is employed in a number of multi-level modeling approaches,
for example, both Melanee [8] and XModeler [9] use it
in order to realize deep instantiation. XModeler is slightly
different in the sense that the potency values describe the level
the given element must get a value assigned to, instead of the
number of levels thereafter the same assignment should take
place. In Melanee, it is possible that an unlimited number of
instances can be created and a feature can be passed over an
unlimited number of instantiation levels. Hence, there is no
canonical definition of the potency notion yet, thus, in practice,
variations may occur, like the ones observed between Melanee

and XModeler. However, this does not alter the meaning of
the core concept of the potency notion.

Here, it is also important to highlight a categorization which
can help to better understand the main contribution of this
paper. Levels have been present in software modeling since the
introduction of UML. Kühne argues that well-defined levels
”safeguard against ill-formed models” [10], which means that
it is easier to create valid, well-formed models. Atkinson and
Kühne compare this concept to strong-typed programming
languages, while approaches that ”ignore the fact that there
are levels” are akin to weakly-typed languages [11]. They call
the former level-adjuvant, the latter level-blind. For example,
Melanee and XModeler support the principles of the level-
adjuvant style of modeling.

Compared to those approaches, in DMLA, we do not
require instantiating every element on all layers of the model.
Therefore, it can be easier to map the characteristics of the
domain step-by-step since we are not forced to group elements
into levels. Since we do not have to specify entire layers of the
domain at once, the model is described progressively, where
certain parts of it can be left ambiguous for the time being.

Taking a closer look at the literature on potency notion
again, it also reveals a number of open questions. For ex-
ample, Kühne has highlighted several problems surrounding
classic potency [12]: intermediate abstract class inconsistency,
potency zero ambiguity and implicit subclass anomaly. The no-
tion of order is also used. Order corresponds to the maximum
depth of the type-of relationships originating from a modeling
element. The ”type-of” relationship includes both ”direct type-
of” and ”indirect type-of”. Kühne claims that a much deeper
distinction between order and potency can be used, paving
the way for a new approach. The main insight is to consider
order as referring to the depth of classification, while potency
as referring to the depth of instantiation. Our work, presented
in this paper, proposes a different method to solve a similar
problem, in order to support the modelers facing unbalanced
level trees of entities in level-blind environments.

Beyond potency, there are other approaches in the literature
which introduce multi-level modeling over existing modeling
paradigms. One of the most notable is MultEcore [13], which
extends the standard modeling features of the Eclipse Mod-
eling Framework in order to provide functionality to create
multi-level hierarchies. MultEcore is an alternative solution
to the potency notion and it introduces multiple levels by
allowing any two adjacent levels in that hierarchy to be
represented as an Ecore metamodel and an XMI instance.
Obviously, MultEcore has both the notions of inheritance and
abstract class inherited form Ecore. Compared to MultEcore,
DMLA is self-contained as it uses its own modeling formalism
and operation language for model manipulation instead of
relying on another modeling paradigm.

IV. DMLA IN A NUTSHELL

A. Basics

Dynamic Multi-Layer Algebra (DMLA) [14], [15] is our
multi-layer modeling framework that consists of two parts:

Fig. 1. Unbalanced tree of entities from the Bicycle Challenge

(i) the Core containing the formal definition of modeling
structures and its management functions; (ii) the Bootstrap
having a set of paradigm-specific reusable entities for modeled
domains.

According to the Core, each entity is defined by a 4-tuple
(unique ID, meta-reference, attributes and concrete values).
Besides these tuples, the Core also defines basic functions to
manipulate the model graph, for example, to create new model
entities or query existing ones. These definitions form the Core
of DMLA, which is defined over an Abstract State Machine
(ASM) [16]. The states of the state machine represent the
snapshots of dynamically evolving models, while transitions
(e.g. deleting a node) stand for modifications between them.

The Bootstrap [17] is an initial set of modeling constructs
and built-in model elements which are needed to customize
the standard modeling structure of DMLA to specific domain
applications. The Bootstrap itself can be modified, so even
the semantics of valid instantiation can be easily re-defined
if needed. From the domain modeler’s point of view, this
unabridged freedom may seem unnecessary and even uncom-
fortable at first glance, but one should keep in mind that
the internal modeling details of the Bootstrap remain conve-
niently hidden, while the external interface that the particular
modeling paradigm offers to the domain experts is clear and
straightforward to use. However, the separation of the Core
and the Bootstrap concepts and the self-modeled instantiation
make it also possible to introduce various multi-level modeling
notions, e.g. the potency, or the t-number notion.

Practical DMLA models are written in a scripting language,

the so-called DMLAScript, instead of being produced as sets
of 4-tuples. DMLAScript is equipped with an Xtext-based
[18] workbench that automates efficient 4-tuple production.
Domain modelers carry out all their model building tasks in
DMLAScript, which makes domain modeling in DMLA really
fast.

B. Instantiation
Instantiation semantics of DMLA means gradual model

constraining and thus it has several peculiarities. Whenever a
model entity claims another entity as its meta, the framework
automatically validates if there is indeed a valid instantiation
between the two entities. However, unlike other modeling
approaches, the rules of valid instantiation are not encoded
in an external programming language (e.g. Java), they are
instead modeled by the Bootstrap. Therefore, both the main
validation logic and also the constraints used by the valida-
tion, like checking type and cardinality conformance must be
precisely modeled within the Bootstrap. Moreover, since the
modeled validation logic is not predefined by some inherent
instantiation semantics of DMLA, the instantiation itself is
Bootstrap-dependent. The operations needed for encoding the
concrete validation logic are modeled by their abstract syntax
tree (AST) representation of 4-tuples in the Bootstrap. Note
that from now on, we always refer to the constructs defined
by the standard Bootstrap whenever we discuss any details of
DMLA unless it is mentioned otherwise explicitly.

DMLA is a fluid style modeling approach, that is, although
each entity has a meta-entity, levels are not explicitly modeled
in advance. Each modeled entity can refer to any other entity

along the meta-hierarchy, unless cross-level referencing is
found to be contradictory to the validation rules. We use
the term fluid metamodeling to characterize this freedom in
referencing between the entities, as the references are flowing
freely between the levels. Note that due to the self-modeled
feature of the Bootstrap, it is possible to create a level-adjuvant
Bootstrap, but up till now we have preferred level-blind fluid
metamodeling instead.

Entities may have attributes referred to as slots, describing
a part of the entity similarly to classes having properties in
Object-Oriented Programming. Also, similar to the relation
between an entity and its meta-entity, each slot originates from
a meta-slot defining the constraints it must take into consid-
eration. When instantiating an entity, all its slots are to be
validated against their meta-slots. This is how DMLA checks
the constraints applied on the meta-slots. These constraints
include, but are not limited to type and cardinality constraints.
It is also possible to create domain-specific slot constraints, or
attach complex constraints validating a certain configuration
of several slots.

Besides gradually narrowing the constraints imposed on a
slot, DMLA enables the division of a slot into several instances
thus fragmenting a general concept into several, more specific
ones. For example, a general purpose meta-slot Components
can be instantiated to Display, CPU and HardDrive. Moreover,
it is also possible to omit a slot completely during the instan-
tiation if that does not contradict the cardinality constraint.

Another important feature of DMLA is that, when an entity
is being instantiated, one can decide which of the slots are
being instantiated and which are merely cloned, that is, being
copied to the instance without any modifications. It means
that one can keep some of the slots intact while the others
are being concretized. This feature with the support of fluid
meta-modeling makes it possible to build structures composed
of parts from different abstraction levels. For example, a
preliminary car concept can have a fully concretized engine,
while also having a highly abstract description of wheels
and chassis. Later on, one can concretize abstract details and
thus create a concrete car specification. This behavior clearly
reflects DMLA’s way of modeling: one can gradually tighten
the constraints on certain parts of the model without having to
impose any unrelated obligations on other parts of the model
which may not be known at that time.

In DMLA, inheritance between the entities is emulated by
instantiation. Although instantiation and inheritance relations
look very similar on the surface, for example both are having
grouping and substitution goals, they are significantly different
as discussed before. Instantiation is natively supported by
DMLA, but inheritance is not. Despite the differences, we
can simulate inheritance by keeping a general usage slot
with infinite cardinality in entities (and instantiating this slot
whenever a new feature is to be added) and clone all other
slots (to obey the rules of the base class).

Nevertheless, we cannot distinguish entities which are
needed for the purpose of handling abstraction from those
which are used for actual instantiation. This was the main

incentive to explicitly introduce the concept of the t-number.

C. Domain engineering

From the domain engineer’s point of view, the most impor-
tant part of DMLA are those elements, which can be directly
used in creating the domain. A usual entry point of domain
definition is the ComplexEntity defined in the Bootstrap.
ComplexEntity has a slot called Children. The cardinality of
the slot Children allows any number of instances (0..*) of any
practically available type.

Since in DMLA, all slots must have an origin, it is not
possible to add new features to an entity, unless the meta-
entity has an appropriate meta-slot. The slot Children is the
usual way to allow to extend entities by new features. In these
cases, Children is divided into a slot representing the new
feature, while the original, general-purpose Children slot may
also be kept. If we omit the slot, we can deny the introduction
of other features in the instances of the given entity.

In DMLA, validation is based on three types of formulae: al-
pha, beta and gamma. Alpha type formulae have been designed
to validate an entity against its instances, by simply checking
if the instantiation relation can be verified between the meta
and instance entities. During validation, the framework iterates
over all entities of the model and invokes alpha type validation
on every entity – meta-entity pair. In contrast, beta type for-
mulae are in-context checks: they are used when an entity has
to be validated against multiple related entities. For example,
cardinality-like constraints are evaluated by beta formulae due
to their underlying one-to-many relation. Gamma formulae are
used when validation cannot be applied locally, but requires
checking for a global conditions, e.g. the uniqueness of an
identifier.

All entities have these formulae, which are very permissive
at the root of the instantiation hierarchy, but they are getting
more and more restrictive as the abstraction level of the entity
is being decreased. Validation and thus the definition of valid
instantiation relies on these formulae.

V. THE T-NUMBER NOTION

The notion of t-number consist of two components: a
slot and an algorithm. The slot contains an integer number,
the t-number, whose value is validated by the algorithm
implemented as an alpha validation formula. In this section,
we define the requirements against the t-number, then we
introduce the entity TBase (the entry point for the notion),
and finally we present the validation algorithm itself.

A. Requirements

The concept behind the t-number is quite simple: real
instantiation increases the value by one, while abstract entities
reset the value to zero. The numbering starts from zero at the
root of the hierarchy unlike in the case of several other notions,
e.g. order [12]. Numbering from the root allows the modeler to
measure the maximum depth of ”type-of” relationship chains
and differentiate abstract entities in DMLA. Moreover, we do

not need to maintain the value of t-number at higher layers
when adding a new instantiation to the bottom.

We specified the following requirements for t-number:
1) If classification is used, the t-number is set to zero.

a) Existing slots are cloned and
b) No slot is omitted and
c) No slot is created, except if its meta is Complex-

Entity.Children.
2) If 1) is not met, it is a real instantiation, thus, t-number

is increased by one.
Note that dividing the slot ComplexEntity.Children (choos-

ing Children as a meta-slot) does not reset the value of the
t-number. This behaviour keeps the characteristics of the clas-
sification relationship, similarly to the classical inheritance,
when one may introduce new features in the inheritance chain.

By defining these requirements, we identified what we need
in order to distinguish vertical instantiation from classification
instantiation. As next, we elaborate the details of our imple-
mentation.

B. Implementation

In this section, we describe our algorithm of properly
distinguishing entities which are needed for the purpose of
abstraction from those which are used for instantiation.

We introduced a specific entity (TBase), which serves as the
new entry point of the domain definition. TBase instantiates
ComplexEntity and clones slot Children. TBase contains two
important features (i) a specific slot (TNumber) for storing
the value of the t-number; and (ii) an alpha formulae to
validate the rules of the t-number (TNumberAlphaValidation).
Figure 2 shows the structure of TBase. The type constraint
on TNumber grants that only number values are accepted, and
the cardinality is restricted to 1..1 (the slot is mandatory and
unique).

Fig. 2. Entity TBase.

We used alpha formulae to validate an entity against its
instances, by simply checking the correctness of the t-number
in every entity considering the rules of t-number. During
validation, the framework iterates over all entities of the model
and invokes alpha validation on every entity and its meta-
entity. The mechanism enforces that all entities must obey to
all t-number requirements along their meta hierarchy. In the
following, we describe the mechanism of TNumberAlphaVali-
dation. Algorithm 1 shows the pseudo code of t-number alpha
validation.

The algorithm consists of four major parts: (i) Querying
the basic elements for the algorithm (Ln. 2-4),(ii) Checking
the slots of the particular entity against the slots contained

1: operation Bool TNumberAlphaValidation(instance)
2: meta = Meta(instance)
3: tnumber = GetValue(instance, $TNumber)
4: metanumber= GetValue(meta, $TNumber)
5: for all slot s ∈ slots do
6: metaslot = Meta(s)
7: if not Contains(meta,s) then
8: if not DerivesFrom($TNumber,s) and not

(metaslot = $ComplexEntity.Children) then
9: if tnumber = metanumber +1 then

10: return true
11: end if
12: else
13: return false
14: end if
15: end if
16: end for
17: for all meta slot m ∈ meta slots do
18: if not Contains(instance,m) then
19: if not DerivesFrom($TNumber,m) then
20: if tnumber = metanumber +1 then
21: return true
22: end if
23: else
24: return false
25: end if
26: end if
27: end for
28: if tnumber = 0 then
29: return true
30: end if
31: return false

Algorithm 1: Pseudo code of t-number algorithm

by the meta (Ln. 5-16), (iii) Checking the slots in the meta
against the instance slots (Ln. 17-27) and (iv) Validating the
classification relationship among the instance and its meta-
entity (Ln. 28-31).

In TNumberAlphaValidation, as first step of the algorithm,
the basic building blocks are queried, which are needed to
construct the validation logic for t-number. We query the meta
of the particular entity by calling the Meta built-in operation
on instance (Ln. 2). We also query the t-number value of the
instance (Ln. 3) and the meta-entity (Ln. 4).

The second part of the algorithm iterates through the slots
of the particular entity and checks whether a new slot is
introduced compared to the slots of the meta-entity by calling
Contains (Ln. 7). Note that new slots are not really new, but
created by dividing an existing meta-slot into several parts
using the slot division feature of DMLA. Although the t-
number itself is also stored in a specific slot, obviously it is
not included in the validation logic (Ln. 8).

According to the specification, the division of the slot
ComplexEntity.Children (choosing Children as a meta-slot)
does not reset the value of the t-number (Ln. 9). If a new

Fig. 3. Solution of the motivating example by using the t-number

slot is introduced (considering the aforementioned rules), the
t-number must be higher with one than the value of the meta-
entity, since the entity is concretized (instantiated).

The third part of the algorithm is responsible for looking for
omitted slots in the particular entity by iterating through the
slots of the meta (Ln. 17). If a slot of the meta is not contained
by the instance (Ln. 18), the value of the t-number must be
increased by one, as slot omission is a way to concretize
entities. Note that the specific t-number slot is not included
in the validation (Ln. 19), similarly to the previous part.

If none of the aforementioned conditions fulfill the rules of
the instantiation relation, the fourth part is evaluated. This part
simply checks the validity of the classification by comparing
the value of t-number to zero.

VI. DEMONSTRATION OF T-NUMBER

In this section, we explain the working principles of the
t-number through the practical example presented earlier in
Section II. Note that although the example is taken from the
Bicycle Challenge [19], it is simplified and slightly modified
for the sake of clarity. Figure 3 depicts the elements of our
solution including the t-number.

The slots are shown embedded into the entities. Meta-
slot relationships are represented with Slot:MetaSlot labels.
The different constraints (e.g. type or cardinality) are ex-
pressed between curly brackets. The ”>” symbol stands for
the introduction of a new slot. Red arrows represent the
inheritance relation, while the black arrows stand for the

instantiation. Note that we must not use the UML convention
of arrows for typing (dotted/dashed) and inheritance (empty
triangle arrow head), because in DMLA instantiation has a
different semantics and inheritance is a mere multi-level notion
implemented in DMLA. Numbers in the upper-right corner of
the entities represent the t-number values.

The BicycleEntity is our starting point. The t-number of
BicycleEntity is zero, since we copy slot Children from
TBase and no slot is omitted. As discussed before, the slot
ComplexEntity.Children enables the creation of custom slots,
like Weight and Size. Besides, Component has an operation
CountComponents as well, which can be used to count all
entities instantiated directly or indirectly from Component.
However, since these slots divide ComplexEntity.Children, the
t-number of Component and Config remains zero. Note that
this also means that they serve as abstract entities.

The t-number of entity Wheel is zero, because it clones all of
the slots from Component, no slots are created or omitted. In
contrast, Frame introduces TubeLength, but TubeLength is also
originated from Children, thus the t-number remains zero. This
is not the case with RaceFrame, which instantiates Frame by
filling out the slot Weight with a concrete value. Accordingly,
the T-number of RaceFrame is set to one.

On the right branch of the meta hierarchy, both Ncycle
(the common meta entity of all cycles, such as bicycles,
unicycles, etc.) and Bicycle increases the value of t-number,
because they contain slots which are not originated from

Children. For example, the slot Wheel is originated from
Config.Components. By following the chain, we may notice
that MountainBike resets the t-number to zero, since it only
introduces a slot (Sticker), which is originated from Children.
This showcases an important feature of t-number: one may
easily distinguish abstract entities along instantiation chains.
At the end of the right branch, Tony’s bike instantiates Bicycle,
thus, t-number is increased again.

Although the illustrated example is simple, we believe that
it demonstrates that t-number can properly distinguish entities
which are needed for the purpose of inheritance from those
which are used for instantiation. Thus, we have presented one
potential way of incorporating inheritance with abstract enti-
ties into DMLA without having to renounce any of DMLA’s
formal aspect such as self-validation or self-description.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the concept of the t-number,
which has been introduced in our fluid style multi-layer
modeling framework. Before elaborating the details of its
idea, we discussed briefly how one could properly interpret
the level abstraction in multi-level modeling. The integration
of inheritance and instantiation in DMLA requires that the
extended Bootstrap is still self-validating after the introduc-
tion of inheritance. Therefore, we also described DMLA in
enough details regarding the technical possibilities. Finally, we
detailed how we modeled the t-number and demonstrated its
uses on a model excerpt borrowed from the Bicycle Challenge.

We did that because we do believe that our way of thinking
is not only applicable to DMLA, but it can also be taken over
by more generic level-blind approaches. However, we only
claim that formal integration of inheritance and instantiation
in a level-blind manner can be implemented via the t-number
only in our fluid style multi-layer formalism where instantia-
tion has a particular semantics. Nevertheless, since DMLA can
now properly mimic one of the most important characteristics
of the potency notion, we do believe that DMLA will be able
to effectively contribute to the future evolution of multi-level
modeling concepts such as order and potency.

Regarding our future work, one of our main goals is to
create a specific research bootstrap for multi-level modeling
notions where multi-level ideas can be experimented with. We
aim to achieve this goal by specifying the formal semantics of
the notions in DMLA. Before that, we will extend the standard
Bootstrap with state-of-the-art OOP modeling concepts which
UML modelers are familiar with and apply on a daily basis.
We do that because we think that if broader support for multi-
level and OOP modeling features are available for professional
modelers in practical tool-chains, they will easier accept the
no-accidental-complexity principle, which may revolutionize
the modeling industry for the very best interest of the multi-
level research community.

ACKNOWLEDGMENT

The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-

2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunications.

Project no. FIEK 16-1-2016-0007 has been implemented
with the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed under
the Centre for Higher Education and Industrial Cooperation
– Research infrastructure development (FIEK 16) funding
scheme.

REFERENCES

[1] C. Atkinson and T. Kühne, “Reducing accidental complexity in domain
models,” Software & Systems Modeling, vol. 7, no. 3, pp. 345–359, Jul
2008. [Online]. Available: https://doi.org/10.1007/s10270-007-0061-0

[2] C. Atkinson and T. Kuhne, “Meta-level independent modelling,” in Inter-
national Workshop on Model Engineering at 14th European Conference
on Object-Oriented Programming, 2000.

[3] DMLA, “https://www.aut.bme.hu/pages/research/vmts/dmla.”
[4] G. Mezei, Z. Theisz, D. Urbán, and S. Bácsi, “The bicycle challenge

in dmla, where validation means correct modeling,” in Proceedings of
MODELS 2018 Workshops, 2018, pp. 643–652. [Online]. Available:
http://ceur-ws.org/Vol-2245/multi paper 2.pdf

[5] MULTI, “https://www.wi-inf.uni-duisburg-essen.de/multi2019/wp-
content/uploads/2019/05/multi process modeling challenge.pdf.”

[6] C. Atkinson and T. Kühne, “The essence of multilevel metamodeling,”
in łUML 2001 — The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, M. Gogolla and C. Kobryn, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 19–33.

[7] T. Kühne and D. Schreiber, “Can programming be liberated from the
two-level style: Multi-level programming with deepjava,” SIGPLAN
Not., vol. 42, no. 10, pp. 229–244, Oct. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1297105.1297044

[8] C. Atkinson and R. Gerbig, “Flexible deep modeling with melanee,” in
Modellierung 2016 - Workshopband : Tagung vom 02. März - 04. März
2016 Karlsruhe, MOD 2016, vol. 255. Bonn: Köllen, 2016, pp. 117–
121. [Online]. Available: http://ub-madoc.bib.uni-mannheim.de/40981/

[9] T. Clark and J. Willans, “Software language engineering with xmf
and xmodeler,” in Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, vol. 2, 01 2012, pp. 311–340.

[10] T. Kühne, “A story of levels,” in Proceedings of MODELS 2018
Workshops, Copenhagen, Denmark, 2018, 2018, pp. 673–682.

[11] C. Atkinson, R. Gerbig, and T. Kühne, “Comparing multi-level modeling
approaches,” in CEUR Workshop Proceedings, vol. 1286, 09 2014.

[12] T. Kühne, “Exploring potency,” in Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS ’18. New York, NY, USA: ACM, 2018, pp.
2–12. [Online]. Available: http://doi.acm.org/10.1145/3239372.3239411

[13] F. Macı́as, A. Rutle, V. Stolz, R. Rodrı́guez-Echeverrı́a, and U. Wolter,
“An approach to flexible multilevel modelling,” Enterprise Modelling
and Information Systems Architectures, vol. 13, pp. 10:1–10:35, 2018.
[Online]. Available: https://doi.org/10.18417/emisa.13.10

[14] D. Urbán, Z. Theisz, and G. Mezei, “Self-describing operations for
multi-level meta-modeling,” in Proc. of the 6th International Conference
on Model-Driven Engineering and Software Development - Volume 1:
MODELSWARD,, INSTICC. SciTePress, 2018, pp. 519–527.

[15] D. Urbán, G. Mezei, and Z. Theisz, “Formalism for static aspects of
dynamic metamodeling,” Periodica Polytechnica Electrical Engineering
and Computer Science, vol. 61, no. 1, pp. 34–47, 2017. [Online].
Available: https://pp.bme.hu/eecs/article/view/9547

[16] R. Boerger, Egon; Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[17] G. Mezei, Z. Theisz, D. Urbán, S. Bácsi, F. A. Somogyi, and D. Palatin-
szky, “A bootstrap for self-describing, self-validating multi-layer meta-
modeling,” in Proceedings of the Automation and Applied Computer
Science Workshop 2019 : AACS’19, D. Dunaev and I. Vajk, Eds., 06
2019, pp. 28–38.

[18] L. Bettini, Implementing Domain Specific Languages with Xtext and
Xtend - Second Edition, 2nd ed. Packt Publishing, 2016.

[19] MULTI, “https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/,”
2018.

