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Dynamic Multi-Layer Algebra
• Core (the “HW”)– Data structure

– Based on Abstract State Machines
– Data structure and management
– 4-tuple {XID, XMeta, Xvalues, XAttributes}

• Bootstrap (the “operating system”)
– Set of entities, enabler of modeling
– Defines metamodeling foundation
– Basic building blocks (modelling and operations)

• DMLAScript (the “programming language”)
– The “sugar”
– Higher abstraction level interface (no tuples)
– Always compiled to entities
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DMLA – Instantiation

• Fluid metamodeling (#Ulrich: RC1, RC2)

– Intention: support stepwise, partial refinement
• Concretization everything at once (a whole level) is rigid

– Entities/attributes are instantiated individually 

– (Partial) Instantiation – mixture of 
• Concretization: the abstraction level is lowered

• Cloning: the entity/feature remains intact (#Ulrich RC7)
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DMLA – Validated operations 
• Goal: self validating bootstrap (without an external language)

– Key: we need to model the operations
– AST elements  Bootstrap
– Operation definitions are built from entities

 A high level script language (DMLAScript) was invented

• Validation formulae
– Alpha: meta – instance (1:1, e.g. type)
– Beta: meta – set of instances (1:n, e.g. cardinality)
– Gamma: instance – whole model (1:*, e.g. uniqueness)
– Entities can extend their formulae, but validation is always enforced 

through the hierarchy up to the root element
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DMLA - slots

• Slots – features of entities

– Constraints – reusable validation logic

• Type, Cardinality (#Ulrich: RC3)

• Operation signature

• Must-Fill-Once

• Extendable and fully modeled validation 
(e.g. filtered cardinality)

– ComplexEntity.Children

• Universal type, unlimited cardinality

• The source of adding new features 
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Slots
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BicycleEntity: ComplexEntity

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Configuration: BicycleEntity

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Components: ComplexEntity.Children {T: $Component, C: 0..*}

Component: BicycleEntity

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Weight: ComplexEntity.Children {T: $Number, C: 1..1}



Inheritance “emulation”
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Component: BicycleEntity

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Weight: ComplexEntity.Children {T: $Number, C: 0..*}

Frame: Component

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Weight: ComplexEntity.Children {T: $Number, C: 0..*}

Seat: Component

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Weight: ComplexEntity.Children {T: $Number, C: 0..*}

Length: ComplexEntity.Children {T: $Number, C: 0..*}



Gradual type constraints
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Configuration: BicycleEntity

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Components: ComplexEntity.Children {T: $Component, C: 0..*}

Ncycle: Configuration

Children: ComplexEntity.Children {T: $Base, C: 0..*}

Components: ComplexEntity.Children {T: $Component, C: 0..*}
Fork: Configuration.Components {T: $Fork, C: 1..1}
Seat: Configuration.Components {T: $Seat, C: 1..3}
Wheel: Configuration.Components {T: $Wheel, C: 1..2}

Bicycle: Ncycle
Tandem: Ncycle

Unicycle: Ncycle



Gradual type constraints
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Bicycle: NCycle

Children: ComplexEntity.Children {T: $Base, C: 0..*}
Components: ComplexEntity.Children {T: $Component, C: 0..*}
Fork: Ncycle.Fork {T: $Fork, C: 1..1}
Seat: Ncycle.Seat {T: $Seat, C: 1..1}

RaceBike: Bicycle

…

Fork: Ncycle.Fork {T: $RaceFork, C: 1..1}
…

ProRaceBike: RaceBike

…

Fork: RaceBike.Fork {T: $ProRaceFork, C: 1..1}
…

ChallengerA2XL: ProRaceBike

…

Fork: ProRaceBike.Fork {T: $RocketA1XL, C: 1..1}
…



Concrete objects

• What does “physical object” mean?

– You can touch it?

– Can you touch a concrete bike, or only its 
components?

– Is a concrete bicycle without wheels still a bike? 
Do the wheels still belong to the bike?

– Serial number of components are unique –
but this stands only for concrete components
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Concrete objects

• Concrete objects

– All primitive slots are filled with a value

– All non-primitive slots have a concrete value

– Has no more “free” slots

• Human + DMLA validation

– Flag-driven validation

– Concreteness is “claimed” 

– The statement is validated by DMLA
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Derived attributes – built-in calculations 

• Get average sales price of a

– …concrete model

– …a category of models

– …a type of bicycle

• Why do not we use the instantiation chain?

• Calculation = built-in operation 

– Added on a higher level (Bicycle)

– Executed on arbitrary level
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Derived attributes – built-in calculations 
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operation Number ID::GetAvarageActualSalesPriceMethod()
{
Number sum = 0; Number cnt = 0;
forall(entity in GetAllEntities) {
if (DerivesFrom($SellingAct, entity)) {
if (GetAttributeValue(entity, $BicycleEntity.AbstractEntity)==null) {
if(DerivesFrom(this, GetAttributeValue(entity, $SellingAct.SoldBicycle))) {
cnt = cnt + 1 ;
sum = sum + GetAttributeValue(entity, $SellingAct.SellingPrice);
// sum = sum + GetAttributeValue(entity, $Bicycle.SalesPrice);

}}}}
if (cnt > 0) return sum/cnt; else return 0;

}

Bicycle: NCycle
RaceBike ProRaceBike

ChallengerA2XL

Bill’sBikeJoe’sBikeJane’sBikeTim’sBikeDan’sBike

…
…

…

SellingAct: BicycleEntity

SellingPrice: … {T: $Number, C: 1..1}
SoldBicycle: … {T: $Bicycle, C: 1..1}



Summary

• Thank you for the challenge!

• Solved (almost) all requirements in DMLA
– Patterns were created during the solution

– The approach may express more complex scenarios 
(e.g. complex cardinality)

• Currently working on…
– VM over DMLA

– New language over DMLAScript for domain 
modeling

– Handle multiple inheritance (diamond pattern)

– Incremental and parallel validation
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Thank You & Any Questions?
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Feel free to check the poster as well

Dynamic Multi-Layer Algebra
http://www.aut.bme.hu/Pages/Research/VMTS/DMLA
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