
DMLA ELEMENTS

A. The Core

In DMLA, the model is represented as a Labeled Directed
Graph. Each element of the model such as nodes, edges or even
attributes can have arbitrary labels. These labels are used either
to hold data (e.g. concrete literal value of an attribute) or to
express relations (e.g. containment) between the elements.
Because attributes may have complex structure, we represent
them as hierarchical trees. Also, for the sake of simplicity, we
will use a dual field notation for labelling of Name/Value pairs,
that is, a label with the name N of the model element X is
referred to as XN.

1) Labels and universes
In DMLA, we defined the following labels: (i) XID: globally

unique ID of model element; (ii) XMeta: ID of the meta-model
definition; (iii) XValues: values of the model element; (iv)
XAttributes: ordered set of contained attributes.

Definition – The superuniverse |A| of a state A of the
DMLA consists of the following universes: (i) UBool containing
logical values {true/false}; (ii) UNumber containing rational
numbers and a special symbol ∞ representing infinity; (iii)
UString containing character sequences of finite length; (iv) UID
containing all possible entity IDs; (v) UBasic containing elements
from {UBool ∪ UNumber ∪ UString ∪ UID}. Additionally, all
universes also contain a special element, undef, which refers to
an undefined value.

The labels of the entities take their values from the
following universes: (i) XID: UID, (ii) XMeta: UID, (iii) XValues:
UBasic[], (vi) XAttrib: UID[]. The label Values is an ordered list of
primitive values, while Attrib is a set of IDs, which refer to
other entities.

2) Functions
In ASMs, functions are used to rule how one can change the

states. In DMLA, we rely on shared and derived functions. The
current attribute configuration of a model element is
represented via shared functions. The values of these functions
can be modified either by the algebra itself, or by the
environment of the algebra (e.g. by the user). Derived functions
represent calculations which cannot change the model; they are
only used to obtain and to restructure existing information. The
vocabulary ∑ of DMLA is assumed to contain the following
characteristic functions: (i) Meta(UID): UID, (ii) Attrib(UID,
UNumber): UID, (iii) Value(UID, UNumber): UBasic. The functions are
used to access the values stored in the corresponding labels.
These functions are not only able to query the requested
information, but they can also update it. For example, one can
update the meta definition of an entity by simply assigning a
value to the Meta function (although the new relation may be
invalid based on the instantiation rules). Moreover, there are
two other derived functions: (i) Contains(UID, UID): UBool and
(ii) DeriveFrom(UID, UID): UBool, which check containment and
instantiation (transitive) relations, respectively.

B. The Bootstrap

The ASM functions define the basic structure of the algebra
and also allow to query and change the model. However,

relying only on these constructs, it would be hard to use the
algebra in practical modeling scenarios due to the lack of basic
built-in data constructs. For example, entities are required to
represent basic types; otherwise one cannot use label Meta
when it refers to a string since the label is supposed to take its
value from UID and not from UString. Hence, one must be able to
define those Base constructs somewhere inside or outside the
core algebra. Obviously, there may be more than one such
“correct” solution to define this initial set of information. We
introduced the concept of the bootstrap which is a flexible and
swappable layer for defining the basic modeling elements. The
particular bootstrap we will present in this paper is a generic
one that can be used as root of any domain-specific bootstraps.

Semantically, modeling entities of the bootstrap (Fig. 1) can
be categorized into four groups: (i) basic types providing a basic
structure for modeling, (ii) built-in types representing the
primitive types available in DMLA, (iii) entities used in
describing operations, and (iv) validation related entities.

Fig. 1 Main elements of the bootstrap

1) Basic entities
Basic entities are basic building blocks, the hierarchy of

modeling entities rely on these elements. Here, we present only
a conceptual overview of the basic entities, mostly focusing on
their role rather than getting on their exact, precise structure.

The Base entity is at the root of the whole DMLA modeling
entity set, thus all other model entities are instantiated from it
(directly or indirectly). Base defines that modeling entities can
have slots (defined by SlotDefs) and ConstraintContainers.
Slots represent substitutable properties, in syntactically similar
manner to class members in OO languages.
ConstraintContainers (and the contained Constraints) are used
to customize instantiation validation formulae. Moreover, Base
has two other slots, reserved for validation formulae that
formalize the basic principles of the instantiation validation as
explained later.

The SlotDef entity is a direct instantiation of Base. It is used
to define slots. Slots can contain ConstraintContainers, which
grants them the ability to attach constraints to any containment
relation defined by the slot. Moreover, SlotDef overrides
validation slots derived from Base.

The Entity entity is another direct instance of Base. Entity is
used as the common meta of all primitive and user-defined
types. Entity has two instances: Primitive (for primitive types)
and ComplexEntity (for custom types).

Base

ConstrContainter SlotDef Entity

ComplexEntity

Statement

Expression

OpDefinition Constraint

Cardinality

TypeConstr

OpSignature

Primitive

Bool

Number

String

2) Built-in types
The core entities needed to represent the universes of ASM

in the bootstrap are: Bool, Number and String. All these types
refer to sets of values in the corresponding universe. For
example, we create entity Bool so that it could be used to
represent Boolean type expressions. Built-in types are relied on
when a slot is filled by a concrete value and that value is not a
reference to another model entity, however it is a primitive,
atomic value. All built-in types are instances of Primitive.

3) Operations
Operations are defined by AST representation consisting of

model entities. Hence, the bootstrap must contain several such
entities, for example, there is an If entity representing the
semantics of the usual if statement, and similarly there is a
While entity, which stands for ordinary while loop semantics.
The most important such AST related entity is the
OperationDefinition, which is used to define an operation. It
has slots for a return type, a context, and certain number of
parameters, including a special slot, called Body. The Body
describes the logic of the operation ant it is a Statement.
Statement entities play similar roles as statements in state-of-
the-art programming languages, e.g. literals, relational
expressions, conditional statements, blocks, iterations etc.

Besides defining the operations, one also needs some
mechanism to invoke them. The OperationCall entity provides
this functionality. It has slots for a context (i.e. “this”), an
arbitrary number of parameters and an OpHandle entity which
refers to an operation definition. All child entities of operation
calls are Expression entities, thus, they can contain a simple, or
a complex expression to be evaluated.

It is often useful to specify the signature of an operation.
Without this, we would have typeless function pointers, which
are hard to use. In DMLA, operations may have a special
constraint, OperationSignature describing their signature, i.e.
the type of its parameters and result.

4) Validation
In DMLA 2.1, the validation logic is transformed from a
universal set of rules to modularized and explicit collection of
sub-formulae. The basic mechanism of DMLA 2.0 universal
validation logic relied on the selection of two type specific
formulae based on the meta-hierarchy of the element to be
validated. The two types of formulae are referred to as alpha
and beta. The alpha type formulae have been constructed to
validate an entity against one of its instances, by simply
checking if the “is-a” relation between the two elements can be
verified. In contrast, the beta type is an in-context check: it is
mainly needed in case an entity has to be validated against
multiple related entities. For example, cardinality-like
constraints can be evaluated by beta formulae due to the
underlying one-to-many relation. Moreover, entities can copy
or extend the validation logic of their meta entity, which grants
a high level of flexibility and expressiveness. Hence, the
validation approach of DMLA 2.0 seemed to be flexible enough
at first sight since the validation logic can be extended gradually
and according to the needs of the particular bootstrap entities.
However, we also quickly realized that, on the other hand,

bootstrap-dependent logic had to be provided on ASM level,
which significantly weakened the aimed flexibility of the
original bootstrap design. In DMLA 2.1, the integration of
operations ASTs into the bootstrap allowed the bootstrap to
contain executable logic. This design made it possible to
migrate the ASM based validation formulae into the bootstrap,
turning them into a self-contained part of the DMLA
infrastructure.

The type-specific alpha and beta type formulae were moved
into the Base entity. Base fully incorporates the generic
instantiation validation approach of DMLA, while the instances
of Base can specialize the standard validation formulae,
changing the behavior of the entities in their sub-branches of
the meta-tree. In other words, new entities within the model
may provide their own specialized definition of valid
instantiation, provided they do not contradict the standard
validation rules imposed by Base.

 Similar to the validation rules, the constraints have also
been modularized in DMLA 2.1. The basic idea was that many
aspects of the validation can be also generalized instead of them
being repeatedly encoded. Thus, we have defined a generic
Constraint entity, which contains two new operations:
constraint-alpha and constraint-beta. These operations are able
to extend the alpha and beta formulae of the container of the
Constraint instance. Also, we have removed the type and
cardinality slots from the SlotDef entity, and have added
ConstraintContainer to Base containing Constraint instances.
The validation formula of Base now also calls these new
operations of all Constraint instances contained.

 Finally, we needed to address the problem of the life-cycle
of the Constraint entities. In DMLA 2.0, the SlotDef-specific
formulae were responsible to ensure that the cardinality and
type constraint contained by SlotDef were copied (kept as they
were), specialized (instantiated with stricter bounds) or
discarded at the same time, which resulted in sealing the SlotDef
instance, meaning it cannot be instantiated any further. When
generalizing the constraint concept, the SlotDef lost its ability
to “tend” for its contained ConstraintContainer and Constraint
instances the same way. To achieve the same consistent rules,
but also to embrace the flexibility introduced with the
Constraint entity, two new formulae have been defined in the
Constraint entity: the ConstraintLifeCycleAlpha and
ConstraintLifeCycleBeta. When ConstraintContainer instances
are being validated, the ConstraintContainer invokes the
ConstraintLifeCycle formulae of the contained Constraint
instance. This enables the Constraint instances to define their
customized life-cycle logic.

 In summary, in DMLA 2.1, the validation of the bootstrap
is based on three pairs of formulae: the alpha and the beta type
validation formulae, which are applied to every entity of the
bootstrap; the ConstraintAlpha and the ConstraintBeta
formulae, which are extensions of the container entity’s alpha
and beta formulae; and finally the ConstraintLifeCycleAlpha
and the ConstraintLifeCycleBeta formulae, which manage and
validate the life-cycle of the Constraint instances.

