
DMLA 3.0: Towards an Industrial
Multi-Layer Modeling Framework

Norbert Somogyi Máté Hidvégi Gergely Mezei
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

{somogyi.norbert, hidvegi.mate, gmezei}@aut.bme.hu

Abstract. Multi-level modeling is an extension of the traditional two-level modeling
paradigm allowing for an arbitrary number of classification levels. The main goals of
multi-level modeling are to improve readability and reduce the complexity of models
by modeling each concept on an abstraction level that is more natural to its purpose.
The Dynamic Multi-Layer Algebra (DMLA) is an approach created for multi-level
modeling. DMLA has originally been created as a proof-of-concept, but has since
proved its feasibility. However, despite its success, DMLA also had various shortcom-
ings that prevented it from being applicable in industrial setups. Apart from being
semantically sound and based on well-proven research, industrial needs often include
non-functional requirements as well. Thus, a major revision was necessary both at a
theoretical and practical level. This paper elaborates on the main concepts of the new
version and the reasons behind them.

Keywords: Modeling; Multi-level modeling; DMLA; Multi-layer modeling; Level-
blind

1 Introduction

The original motivation behind multi-level modeling was to create a modeling
paradigm (i) to reduce accidental complexity [1], and (ii) to improve the general
comprehension of models. In this context, accidental complexity means that
model elements are created solely for the sake of expressing the multi-level na-
ture of the solution, rather than capturing some aspect of the modeled domain.
For this purpose, multi-level modeling has introduced the concept of unlimited
instantiation levels and various other notions that are based on the unlimited
nature of levels. Approaches that acknowledge the existence of explicit mod-
eling levels are often referred to as level-adjuvant. Similar yet highly different
approaches have also emerged in the form of level-blind approaches, which do
not acknowledge explicit instantiation levels, although they can still implicitly
implement the concept of levels.

Dynamic Multi-Layer Algebra (DMLA) is a level-blind, multi-layer modeling
approach based on the Abstract State Machines (ASM) formalism [2]. DMLA
offers a highly flexible and customizable modeling structure and it can easily
deal with both design-time and run-time aspects of modeling. To achieve this,



DMLA 3.0. . . Norbert Somogyi et al.

the concept of instantiation is dynamic in spirit and the formalism is able to
account for explicit model states and not just for simple isolated snapshots.
Over the years, DMLA has proved its feasibility and various advantages over
multi-level modeling approaches. [3, 4] Nevertheless, in some aspects, further
improvements could be made. For example, common industrial needs, such as
transaction handling or communication with external applications, should be
supported. Thus, in this paper, we present DMLA 3.0, the main goal of which
is to become a framework also fit for industrial development.

The paper is structured as follows. Section 2 presents related work, high-
lighting the main ideas of multi-level modeling and comparing our approach to
other multi-level solutions. Section 3 introduces the main concepts, fundamen-
tal goals, theoretical difficulties and improvements, components, architecture
and functionalities of DMLA 3.0. Section 4 concludes the paper.

2 Related work

Multi-level modeling is a modeling approach that aims to improve upon the
shortcomings of traditional modeling approaches, such as OMG’s Meta Object
Facility (MOF) [5]. The key idea behind multi-level modeling is deep instan-
tiation [6]. As opposed to classic approaches with a fixed number of levels, in
multi-level modeling, instantiation may concern an arbitrary amount of levels.
Instantiation chains are formed, further refining the original concept until a
concrete model element is created. Consequently, a model element may be the
meta-type of another element on a lower level and the instance of an element
at a higher level. For this reason, model elements may be considered as both
classes and objects at the same time and are often referred to as clabjects [7].
Potency notion [8] means labeling elements of the model with non-negative in-
tegers. Potency controls the depth of instantiation on a given model element.
For example, a potency of 3 implies that the instantiation of the element spans
exactly 3 further levels. Over the years, the concept of potency notion has
undergone significant revision and has evolved into numerous different variants.

Over the years, many research tools had been created for different multi-level
approaches. Deep Java [9] is an approach that integrates multi-level modeling
into an object-oriented environment. It uses the concept of classic potency
notion. MultEcore [10] is a potency-based tool that represents any two adjacent
levels as an Ecore model directly in the Eclipse Modeling Framework (EMF). In
contrast to Deep Java and MultEcore, DMLA 3.0 uses its own ecosystem and
does not use potency notion. DMLA 3.0 strives to include support for numerous
industrial requirements, such as transaction handling or multi-user support.
No other tool is known to take such aspects into consideration, for they focus
mainly on the modeling aspects of their approach. Naturally, DMLA 3.0 retains
any advantage that previous iterations had, such as being highly flexible and
supporting fast-prototyping. Apart from the industrial requirements, DMLA
3.0 also focuses on further improving and solidifying its theoretical formalism.



Norbert Somogyi et al. DMLA 3.0. . .

3 DMLA

In this section, we present the milestones of DMLA incarnations. We briefly
introduce DMLA 1.0 and 2.0, and also present DMLA 3.0, introducing its main
concepts, fundamental goals, components, architecture and functionalities.

3.1 Core and Bootstrap

The Dynamic Multi-Layer Algebra (DMLA) is a multi-layer modeling frame-
work inspired by the core ideas of multi-level modeling. DMLA is a level-blind
approach that does not use the potency notion concept although it can emulate
potency. This is why we refer to DMLA as multi-layer instead of multi-level.
DMLA consists of two essential basic parts: the Core and the Bootstrap. The
Core defines the basic modeling structure describing the model elements (nodes
and edges), along with low-level functions to access and modify them [11]. In
DMLA, the model elements are called entities. The theoretical formalism of
entities is defined in the Core. Every entity is represented as tuples containing
various information about the element. The Bootstrap [11] is a set of entities
defining basic modeling facilities. The Bootstrap makes it possible to use DMLA
to actually create domain models in practice. It defines not only the basic en-
tities, but also the basics of validation and thus the semantics of instantiation
itself. Consequently, it is possible to create different Bootstraps following dif-
ferent modeling paradigms. This concept is one of the most important features
of DMLA.

3.2 DMLA 1.0 and 2.0

DMLA had two previous incarnations. DMLA 1.0 followed the naive approach
of each major modeling concern having been allocated to its own representa-
tion in a 6-tuple structure defined over the underlying ASM [2] representation.
DMLA 2.0 [12] introduced a major improvement by replacing the 6-tuples by
4-tuples emphasizing validated, modeled behavior over hard-wired constructs.
The 4-tuples describe: (i) the ID of the entity, (ii) the ID of the entity’s meta
entity (instantiation relationship), (iii) values assigned to the element (refer-
ence to another entity, or a primitive string, number or bool literal), and (iv)
attributes assigned to the element. Entities may contain other entities, in this
case, the attributes hold the references to the contained entities. DMLA 2.0 also
introduced a completely modeled operation language, which made it possible to
describe the validation semantics by modeled entities instead of abstract formal
functions like in DMLA 1.0. Operations may be contained by entities, simi-
larly to how methods may belong to objects in object-oriented programming
languages. The modeled operation language of DMLA 2.0 also made it possible
to re-design the validation mechanism. The Bootstrap became self-validated
and almost completely self-describing. DMLA 2.0 also introduced slots (value
holders) and constraints (reusable validation logic) as part of the Bootstrap.



DMLA 3.0. . . Norbert Somogyi et al.

The flexibility of DMLA was proven by several challenges and research re-
sults. However, DMLA 2.0 also had its limits: (i) the self-describing model
architecture resulted in a complex boxing mechanism in the Bootstrap, pro-
ducing many entities solely for technical reasons, (ii) the modeled operation
language focused on validation only, (iii) the approach was realized as a closed
ecosystem: a single-user application, which had no option to access the mod-
els from outside, or to reach external applications from the models. As these
compromises do not belong to a fully-fledged modeling environment, a major
overhaul of DMLA was deemed necessary.

3.3 Goals

When designing DMLA 3.0, collecting a well-defined list of goals was a necessary
first step. Some of these stem from the original motivation behind creating
DMLA, while others were added to improve usability and the ability to use
DMLA in industrial scenarios. The following goals were identified:

• Stepwise refinement. The approach should support creating highly
abstract prototypes and refine them step-by-step all the way to concrete
products. This has always been one of the main objectives of DMLA. This
way fast-prototyping is supported: the ability to quickly create prototype
models based on partial information.

• Strict, self-described validation. The Boostrap should be able to
validate itself and all other (domain) models as well. This way, the model
may automatically be kept valid at all times.

• Support for modification. There should be a way to modify, create
and delete entities using the operation language.

• Modeled operations. The operation language should be fully modeled
and operation code should be able to be modified similarly to other mod-
eling entities.

• External collaboration. The approach should be able to reach external
components, and external components should be able to reach the mod-
els and even modify them. Naturally, providing external services for the
model and vice versa is crucial when used in industrial setups, as this en-
ables the modeling framework to be integrated into a network of services.

• Multi-user support. The approach should be able to support multiple
users working on the models simultaneously. Similarly to version con-
trol systems, the approach should support parallel editing of models and
various other artefacts in a convenient and error free way.

• Generated applications. Code generation based on the models should
be supported.



Norbert Somogyi et al. DMLA 3.0. . .

3.4 Main components
Driven by the goals, we have re-designed most of the components of DMLA.
The Core remains unchanged (both its definition and its role), it still describes
the structure of tuples and the basic functions (e.g. querying a part of the tu-
ple) of the ASM formalism. The role of the Bootstrap also remains unchanged,
but its content has been completely rewritten. Regarding the relationship be-
tween the Bootstrap and the Core, several shortcomings of the previous DMLA
implementation have surfaced over the years.

Starting from DMLA 2.0, a virtual machine (an interpreter) was used to
emulate the ASM in practice to manipulate the entities and execute operations.
The main issue stems from the fact that the operation language of DMLA needs
a set of programming statements (e.g. conditional branch or iterations) to build
the operations. These statements can easily be modeled as entities, but defining
their semantics is not an obvious task. From a theoretical point of view, one can
say that the underlying ASM supports these statements, but in practice, one
must define how exactly to handle the statements. In DMLA 2.0, this issue was
solved by a hard-wired mapping between the modeled programming statement
entities and the underlying virtual machine language, but this solution is fragile
and not elegant. Especially considering that several Bootstraps and several
virtual machine implementations may exist.

As a solution, in DMLA 3.0, we have introduced the Bootstrap Core Interface
(BCI), which is an abstraction over the Core and is practically a set of constructs.
Every element listed in the BCI must have a corresponding implementation in
the Bootstrap. It is worth mentioning that besides the statements, the BCI
contains several other constructs to be able to emulate the ASM completely: (i)
built-in ASM functions to manipulate the tuples, and (ii) entry points for entity
validation. The main advantages of using the BCI are: (i) it has an explicit list
of supported statements and built-in functions and (ii) the virtual machine and
the Bootstraps are now independent of each other. The virtual machine defines
the semantics of all BCI constructs; thus, it can execute operation statements
easily. Moreover, Bootstraps have a reference only to the BCI, not to the virtual
machine directly, which simplifies locating errors and is also advantageous for
security aspects.

3.5 Bootstrap 3.0
The Bootstrap plays a key role in DMLA, thus, having an efficient Bootstrap
is mandatory. The previous Bootstrap had been created as a proof-of-concept
solution and it had several compromises. For example, it used several layers of
boxing of entities in order to handle self-describing validation. While designing
the new Bootstrap, these shortcomings were avoided wherever possible.

3.5.1 Components of entities

In DMLA 2.0, all entities had validation operations used to refine the instan-
tiation. Moreover, entities were composed of slots used both as value holders



DMLA 3.0. . . Norbert Somogyi et al.

(such as fields in the object-oriented world) and for operations. It was possible
to add constraints (re-usable validation logic) on slots in order to customize
their instantiation. As constraints themselves were also entities, they were able
to have slots (modeling the parameters of the constraint logic), and the lifecycle
of entities was ruled by customizing the validation operations of the constraints.
Although this hierarchy was adequate, it had some drawbacks. (i) Fields and
operations were not differentiated, although their constraints and lifecycles were
highly different (e.g. a field must always have a type and a cardinality, while
an operation has a signature). (ii) Entities were not able to have constraints
directly. (iii) The lifecycle validations of constraints were designed to be highly
general leading to overly complicated definitions.

In DMLA 3.0, the Bootstrap defines that domain entities are composed of
four attributes: (i) fields, (ii) operations, (iii) constraints and (iv) annotations.
All of the different attribute types have their own roles and are handled dif-
ferently. Fields and operations are separated, due to their different life-cycles.
It is possible to create entities which do not allow adding new fields to their
instances, but the ability of adding operations cannot be disabled. This be-
havior reflects that the structure of the entity may be sealed but it is always
possible to extend its dynamic behavior. Constraints can be added to entities
directly, they define a restriction on the structure or the value of the entity.
They can be added to any entity, but they cannot be omitted later during the
instantiation. This reflects the fact that if we add a restriction to an entity,
then this restriction should be obeyed by all of its direct and indirect instances
as well. Similarly to many modeling and programming environments, DMLA
3.0 introduces annotations to alter how the entity should be processed. Some
of the annotations instruct the Bootstrap (e.g. the validation), while others are
processed by the underlying virtual machine (e.g. BCI mapping). Annotations
can be freely added to or removed from any entities.

3.6 Structural validation and entity modification

Each entity is a direct or indirect instance of the entity Base, which has an oper-
ation called Validate. All entities inherit this, thus all entities can be validated.
Naturally, entities tend to override the original definition of Validate and cus-
tomize the semantics of instantiation. However, instances may only tighten the
validation rules, but are not allowed to relax them. The validation operation is
a BCI construct: whenever the virtual machine proceeds to check whether an
entity is valid, it looks up the correct operation based on the BCI mapping and
executes that operation. Thus, the virtual machine decides when it validates an
entity, but it is the Bootstrap that decides what validation means.

Since the semantics of valid instantiation depend on the Bootstrap, not on
the virtual machine or the BCI, the validation of the structure of entities is also
Bootstrap-dependent. Naturally, the Core representation cannot be altered,
entities are represented by 4-tuples. However, the Bootstrap can decide how it
handles the attributes of entities. For example, the four parts that entities are
composed of and the validation rules mentioned above are completely modeled



Norbert Somogyi et al. DMLA 3.0. . .

by the Bootstrap and described by its operation language. The virtual machine
and even the BCI is unaware of this structure. It would be possible to create
another Bootstrap introducing for example derived properties without changing
the virtual machine or the BCI.

At this point it is worth mentioning that the Core (and therefore the BCI)
offers only low-level functions to create entities. A new tuple can be created, but
it will be completely empty. Usually, this is not sufficient as we expect entities
to have fields, operations, constraints and sometimes annotations as defined in
their meta-entity. The Core cannot guarantee this, since it does not know about
the four attribute types that entities are composed of and the instantiation
mechanisms in general. To overcome this, the Bootstrap was extended with
advanced creation operations, which instantiate attributes as expected.

3.6.1 Contracts

In DMLA, every entity has exactly one meta-entity refining the rules of instan-
tiation, including the constraints imposed upon the structure and the values of
instance entities. Although this mechanism works well, introducing the inheri-
tance relationship becomes impossible as both the base entity (inheritance) and
the meta-entity (instantiation) would define rules e.g. on the fields of the entity
and these rules could conflict with each other. The situation is even worse con-
sidering that fields refer to their meta-field directly. However, using inheritance
would be useful in many scenarios especially to group entities.

To overcome this issue, DMLA 3.0 introduces Contracts. Contracts are very
similar to object-oriented interfaces in the sense that they define a structural
pattern that each entity adhering to this contract must include. There are
two differences between the meta-entity and the Contract: (i) The meta-entity
acts as a full specification, namely, attributes not mentioned in the meta-entity
are considered invalid, while Contracts do not add any restrictions on such
attributes. (ii) The meta-entity validates its slots based on their meta-slots. In
contrast, Contracts apply a constraint-based validation only: if the constraints
of the given slot are satisfied, then the slot is considered valid. Based on these
differences, a Contract accomplishes a flexible grouping mechanism on entities.

3.7 DMLA Engine

The technology that enabled DMLA 2.0 to create, modify and validate models
on-the-fly is called GraalVM [13]. GraalVM is a new generation Java Virtual
Machine and development kit which provides ahead-of-time compilation and
efficient support for custom programming languages as well. The enhanced lan-
guage support is achieved by Truffle [14]. Truffle is an API on top of GraalVM
allowing the implementation of arbitrary programming languages such as the
modeled operation language of DMLA, while also allowing interoperability be-
tween the different Truffle languages by its polyglot nature. The implementation
of DMLA 3.0 is also based on GraalVM and Truffle.



DMLA 3.0. . . Norbert Somogyi et al.

Figure 1: DMLA 3.0 Engine

3.7.1 Architecture

The architecture of the DMLA 3.0 Engine is depicted in Figure 1. The En-
gine contains four subcomponents: (i) the Parser, (ii) the User Manager, (iii)
the External Call Manager, and (iv) the Interpreter. The Parser component is
responsible for constructing the tuple representation from a user-friendly tex-
tual or graphical representation and building the Truffle Abstract Syntax Trees
(AST) from the operation definitions. The User Manager component handles
user registration, authentication and authorization including permission han-
dling. The External Call Manager creates a bridge between the model space
and external applications. Finally, the Interpreter is the main component of the
Engine. It has several subcomponents: (i) the Model State Handler acts as a
model repository and ensures validation of models, (ii) the Operation Execution
evaluates operation definitions, (iii-iv) the Logger and the Development Helper
components help developing models and localizing errors, (v) the Transaction
Handler grants consistency and validation even in a multi-user environment, and
(vi) the Type System Checker helps using and validating the unique, modeled
type system of DMLA.

3.7.2 Validation

In earlier iterations, validation always meant checking the relations and struc-
ture of entities. Given a snapshot, it was evaluated whether each entity is a
valid instance of its meta-entity. However, by introducing the operation lan-
guage, moving the focus from validation to more general model manipulation
and opening the ecosystem of DMLA, three kinds of validations emerged: (i)
structural, (ii) dynamic, and (iii) environmental validation. Structural valida-
tion is always applied on a snapshot of the models; thus, entities are handled as
read-only. In contrast, dynamic validation defines rules for scenarios when the
model is currently changing or has been changed. Finally, environmental vali-
dation formulates rules for the execution environment (DMLA Engine). These
rules are not directly part of the models, but affect their execution. Structural
validation rules are completely modeled, dynamic validation is partially mod-
eled, while environmental validation rules are encoded solely in the underlying
DMLA Engine.



Norbert Somogyi et al. DMLA 3.0. . .

Structural validation Structural validation is based on the Validate oper-
ation of the entities mentioned earlier. There are two different scenarios to
handle: (i) single entity validation, and (ii) full model validation. Single entity
validation means validating an entity against its meta-entity. In contrast, full
model validation validates all entities, which usually happens when starting the
DMLA Engine. In this scenario, the Interpreter calls the single entity valida-
tion on each entity one-by-one. Structural validation may be triggered by an
interaction with the user, or automatically by the virtual machine (e.g. when
loading models).

Dynamic validation Dynamic validation consists of rules to be enforced dur-
ing (i) the change of model entities, and (ii) the execution of operations. When
an entity is to be changed, the Interpreter must evaluate the annotations ap-
plied on the entity. For example, the read-only annotation means that the tuple
representing the entity cannot be changed. Note that structural validation can-
not be used here, since both the old and the new version of the entity would
possibly be a valid instance of its meta-entity. However, the modification should
be forbidden. The validation of such annotations is currently handled by the
Interpreter. Another case when dynamic validation is used occurs when exe-
cuting operations. For example, type checking should be applied on variables
and parameters of operations, when the operation is run. The main challenge
stems from the fact that the type system of DMLA is rather dynamic. Instead
of having a somewhat static type hierarchy as usual, the concept of type is
encoded in the semantics of instantiation. This means that the Interpreter can-
not decide on itself whether a certain value belongs to a certain type. It must
call the validation defined by the Bootstrap or the domain model in order to
answer that question. The following points must be validated when executing
an operation: (i) the type of the parameters whenever an operation is called,
or an operation returns a value, (ii) variable assignment, (iii) typecasting. The
Interpreter handles these validations automatically and transparently based on
the modeled type conformance checks and reports any type conformance errors.

Environmental validation There are several scenarios, when environmental
validation is needed, such as user management or transaction handling. Users
should be able to log in, apply queries, modify the model, while others are simul-
taneously working on the same model. Although users and their permissions
could be modeled by the Bootstrap, that would actually not be desirable as
users of the framework are definitely not part of the domains. Therefore, they
are handled completely by the Engine as part of the environmental validation.

Similarly to users, transactions are handled by the Engine. DMLA 3.0 offers
a very simple but efficient method for handling conflicts caused by simultaneous
user actions or by action sequences leading to invalid entities. All operations
are executed in a transaction. A transaction is started when the engine starts
the execution of the operation and it is committed at the end of the execution.
The prerequisite of a successful commit is a successful model validation. If the
commit fails for any reason, the changes are rolled back, and an exception is



DMLA 3.0. . . Norbert Somogyi et al.

thrown by the Interpreter. Transactions are not modeled as they are part of the
execution environment, not the (domain) models. Avoiding inconsistent model
states caused by transactions are granted by the environmental validation.

3.8 External interfaces

In the previous iterations, DMLA was used only as a modeling system with
strict, multi-layer validation. Moreover, the validation had to be modeled com-
pletely, e.g. there was no option to use an external constraint solver. DMLA
operated in a closed ecosystem with highly limited ways to communicate with
external applications. In contrast, DMLA 3.0 aims at communicating and col-
laborating with external applications.

Applications may want to use different ways of communication with DMLA,
e.g. REST API, TCP connection or direct API calls. It is clearly not desirable to
add these technical details to the model. Especially, since this information is not
part of the domain, but a configuration setting of the execution environment.
DMLA 3.0 introduces Connection Points (CP) identified by an ID (string).
The External Call Manager (ECM) component of the Engine supports a set
of protocols, one of which the applications must implement. A CP contains
technical details based on the selected protocol (e. g. IP address) needed by
the ECM to communicate with the external application. Therefore, CPs act as
a bridge between the inner entities of DMLA and the outside world.

There are four different scenarios to support regarding the direction of com-
munication. (i) DMLA operation calls external application, (ii) external ap-
plication calls DMLA operation, (iii) external application reads the structure
of an entity, (iv) code generation based on DMLA entities. In the first case,
the modeler defines an operation with an empty body and specifies the CP to
use. If the operation is called, the ECM identifies the external application and
forwards the input parameters set by the call. These operation calls are always
executed asynchronously, but it is possible to specify a callback function to be
executed when the external call returns. In the second case, the identifier of
the CP is used as an annotation on the modeled DMLA operation, which is to
be called by the external application. Based on the annotation, the ECM can
identify the operation, pass the parameters given by the external application
and call the operation. Moreover, it is possible to register a second CP, which
is used to send the result of the DMLA operation back to the external appli-
cation. In the third case, no operation needs to be executed, but the structure
of an entity is to be queried. The solution is based on the built-in Serialize
function available in all entities. Serialize creates a JSON representation of the
structure of the entity. The Interpreter calls Serialize on the specified entity
and returns the results to the external application. The fourth case is an ad-
vanced version of the third one. The user obtains the JSON representation of
the specified entity and generates code using this data. The code generation
is based on DMLA Structure Description Language (DSDL), a template-based
model transformation language created specifically for this purpose.



Norbert Somogyi et al. DMLA 3.0. . .

4 Conclusions

Dynamic Multi-Layer Algebra (DMLA) is a multi-layer modeling approach aim-
ing at providing an efficient solution for multi-level modeling for industrial ap-
plications. In this paper, we have presented the goals, concepts and features
introduced in the new iteration, DMLA 3.0. The motivation for a significant
revision stemmed partly from the original goals set in the previous iterations
and partly from being able to support typical industrial requirements. While
the formal base was kept unchanged, the Bootstrap and the virtual machine was
completely rewritten to make editing domain models more efficient and conve-
nient. Although the paper presented the changes in the software design and
architecture as well, these changes were caused mainly by theoretical improve-
ments. We have also presented the main issues and their solutions in several
key aspects. DMLA 3.0 is superior compared to earlier versions in almost all
aspects. Besides being easier to use in practical scenarios, it is more rigorously
formalized and at the same time more flexible as well. Currently, DMLA 3.0 is
under development. We plan to implement the approach as elaborated in this
paper and prove its features by several case studies.

Acknowledgments

The work presented in this paper has been carried out in the frame of project no.
2018-1.1.2-KFI-2018-00062, which has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary, financed
under the 2018-1.1.2 KFI. funding scheme. It was also supported by the BME Artif-
cial Intelligence TKP2020 IE grant of NKFIH Hungary (BME IE-MI-SC TKP2020)
and by the Ministry of Innovation and the National Research, Development and Inno-
vation Office within the framework of the Artificial Intelligence National Laboratory
Programme.

References

[1] C. Atkinson and T. Kühne, “Reducing accidental complexity in domain
models,” Software & Systems Modeling, vol. 7, pp. 345–359, Jul 2008.

[2] E. Börger and R. Stärk, Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag New York, Inc., 1st ed., 2003.

[3] G. Mezei, Z. Theisz, D. Urbán, and S. Bácsi, “The bicycle challenge in dmla,
where validation means correct modeling,” in Proceedings of MODELS 2018
Workshops: 21st International Conference on Model Driven Engineering
Languages and Systems (MODELS 2018), Copenhagen, Denmark, October,
14, 2018 (R. Hebig and T. Berger, eds.), vol. 2245 of CEUR Workshop
Proceedings, pp. 643–652, CEUR-WS.org, 2018.



DMLA 3.0. . . Norbert Somogyi et al.

[4] F. A. Somogyi, G. Mezei, D. Urbán, Z. Theisz, S. Bácsi, and D. Palatinszky,
“Multi-level modeling with DMLA - A contribution to the MULTI process
challenge,” in 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS Companion
2019, Munich, Germany, September 15-20, 2019, pp. 119–127, IEEE, 2019.

[5] “OMG: MetaObject Facility.” http://www.omg.org/mof/, 2005.
Accessed:2021-04-23.

[6] C. Atkinson and T. Kühne, “The essence of multilevel metamodeling,” in
Proceedings of the 4th International Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools, (Berlin, Heidelberg),
pp. 19–33, Springer-Verlag, 2001.

[7] C. Atkinson and T. Kühne, “Meta-level independent modelling,” in Inter-
national Workshop on Model Engineering at 14th European Conference on
Object-Oriented Programming, pp. 1–4, 2000.

[8] F. A. Somogyi, Z. Theisz, S. Bácsi, G. Mezei, and D. Palatinszky., “Multi-
level modeling without classical modeling facilities,” in Proceedings of
the 8th International Conference on Model-Driven Engineering and Soft-
ware Development - Volume 1: MODELSWARD,, pp. 393–400, INSTICC,
SciTePress, 2020.

[9] T. Kühne and D. Schreiber, “Can programming be liberated from the
two-level style: Multi-level programming with deepjava,” SIGPLAN Not.,
vol. 42, pp. 229–244, Oct. 2007.

[10] F. Macías, A. Rutle, V. Stolz, R. Rodríguez-Echeverría, and U. Wolter,
“An approach to flexible multilevel modelling.,” Enterprise Modelling and
Information Systems Architectures, vol. 13, pp. 10:1–10:35, 2018.

[11] G. Mezei, F. A. Somogyi, Z. Theisz, D. Urbán, S. Bácsi, and D. Palatinszky,
“A bootstrap for self-describing, self-validating multi-layer metamodeling,”
in Proceedings of the Automation and Applied Computer Science Workshop,
pp. 28–38, 2019.

[12] D. Urbán, G. Mezei, and Z. Theisz, “Formalism for static aspects of dy-
namic metamodeling,” Periodica Polytechnica Electrical Engineering and
Computer Science, vol. 61, no. 1, pp. 34–47, (2017).

[13] D. Bonetta, “Graalvm: Metaprogramming inside a polyglot system (invited
talk),” in Proceedings of the 3rd ACM SIGPLAN International Workshop
on Meta-Programming Techniques and Reflection, META 2018, (New York,
NY, USA), pp. 3–4, Association for Computing Machinery, 2018.

[14] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton,
G. Duboscq, D. Simon, and M. Grimmer, “Practical partial evaluation for
high-performance dynamic language runtimes,” SIGPLAN Not., vol. 52,
pp. 662–676, June 2017.


