A bootstrap for self-describing,
self-validating multi-layer metamodeling

Gergely Mezei Zoltan Theisz Daniel Urban
Sandor Bécsi Ferenc A. Somogyi Déniel Palatinszky

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

{gmezei, ztheisz, daniel.urban, sandor.bacsi, somogyi.ferenc,
daniel.palatinszky }@aut.bme.hu

Abstract. In the age of Industry 4.0, the ability to be highly flexible and at the same
time rigorously precise is the principal requirement to become part of the smart rev-
olution. Therefore, although classical metamodeling approaches do offer a relatively
higher standard of flexibility compared to state-of-the-art object-oriented paradigms,
they still fail to support effective step-wise refinement required by the smart industry.
Multi-level metamodeling aims to address this issue by increasing the number of mod-
eling layers. By managing to create a self-describing and self-validating approach, one
may end up providing a perfect solution to the challenges and also grant model valid-
ity in real. In recent years, our research group has created such an approach called
the Dynamic Multi-Layer Algebra (DMLA). DMLA is a multi-layer metamodeling
formalism with a sound mathematical background. In order to achieve the needed
flexibility, we have designed a bootstrap of model entities that are both self-describing
and self-validating by design. This paper introduces the elements of the bootstrap by
mainly focusing on those metamodeling ideas which we have considered essential for
any realistic multi-level metamodeling approaches of such kind.

Keywords: Metamodelling; validation; DMLA; multi-layer; multi-level; bootstrap

1 Introduction

Industry challenges of today can sometimes only be answered by beyond state-of-
the art software development paradigms. The legacy approaches of model-based
software engineering (MBSE) and in particular the ones of applied domain-
specific modeling have often turned out not being either flexible of precise
enough in practice; hence, new methods are to be sought for. As a contem-
porary trend in MBSE, two and/or four level metamodeling frameworks are
being frequently extended to an arbitrary number of levels, which could au-
tomatically lead to higher flexibility of expressiveness, but sometimes only at
the cost of losing modeling precision. Nevertheless, for a modeling approach
to be rigorous enough is indeed a mandatory feature for being able to support
the continuous evolution of requirements industry 4.0 solutions are based on.
Although the modeling community has well understood the challenge, current

A bootstrap for multi-layer metamodeling Gergely Mezei et. al.

research in multi-level metamodeling clearly indicates that there exists no uni-
versally accepted standard yet that is fully embraced by all researchers and tool
vendors. On the contrary, this research field is in full (r)evolution and plenty
of more or less compatible academic and practical approaches emerge. One of
these novel approaches is the Dynamic Multi-Layer Algebra (DMLA) which has
been created in our research group for last four years. DMLA supports multi-
level modeling behavior in a peculiar, but naturally obvious way. Unlike in
many current modeling tools and methodologies, in DMLA, the modeling rules
(both structural and operational) of the approach are explicitly modeled in so
called bootstraps. That is, DMLA’s bootstraps are self-describing assets and
because they also precisely define the validation logic of its own by themselves
they are also self-validating. Thus, the modeling paradigm defined by DMLA
is automatically kept consistent and valid at all times.

This paper explains the standard bootstrap of DMLA, the so-called Boot-
strap, which is the keystone of any validated, self-describing multi-level meta-
modeling in DMLA. The paper is organized as follows: Section 2 gives a brief
summary on bootstrapping in other modeling systems. Next, Section 3 in-
troduces the formal theory behind DMLA and then it also elaborates on the
details of the Bootstrap. Finally, Section 4 concludes the paper and sets out
future research.

2 Related work

Bootstrapping of a language or modeling hierarchy, in general, means that there
is a process where all initial elements are to be set up. This approach is a rather
usual step in many modeling and programming environments such as in Java’s
bootstrap class loader. In compiler technology, it is also a common method
to develop a language compiler firstly in an existing language, then, to rewrite
it in the new language, and finally to re-compile it by itself. However, in the
field of MBSE and in particular in multi-level modeling, having a self-describing
bootstrap is not such a common practice yet.

Smalltalk [1] is an object-oriented, dynamically typed reflective program-
ming language. Reflective means here that the language is defined in itself in
a causally connected way. Pharo [2] is inspired by Smalltalk, but aims to over-
come its limitations and improve its concepts. Both approaches are capable of
changing their own language definition, but they are programming languages
with inherent typing and OOP mechanisms, and cannot offer the unabridged
freedom of a real modeling language.

The Meta Object Facility (MOF [3]) defines its bootstrap as part of the
MOF standard. According to the standard, the bootstrap is self-describing, but
this statement is hard to verify since the standard does not provide any formal
proves and the informal textual description, in English, is hard to be considered
mathematically sound due to its complex self-referencing.

An open-source industrial-strength Meta-Programming System (MPS) [4] [5]
is provided by the company Jetbrains. MPS provides several meta-languages

Gergely Mezei et. al. A bootstrap for multi-layer metamodeling

covering a wide range of language-design elements in order to support compre-
hensive language design. All the meta-languages within MPS are defined by
MPS itself making the platform quasi bootstrapped. Nevertheless, MPS heav-
ily relies on built-in executable language called Base Language, which resembles
to Java, which is the source of any further language extension and development
within MPS. Hence, although MPS’s self-describing bootstrap is an interesting
approach, MPS does not enable modifications to the Base Language without re-
implementation of the framework and it does not support multi-level hierarchies,
either.

3 DMLA

The Dynamic Multi-Layer Algebra (DMLA) [6][7][8] is a multi-layer modeling
framework based on Abstract State Machines (ASM, [9]). DMLA consists of two
parts: (i) the Core containing the formal definition of modeling structures and
its management functions; (ii) the Bootstrap having a set of essential reusable
entities of any modeled domains in DMLA. We have intentionally separated the
two parts because the algebra must be self-contained in structure and must be
able to get used with different bootstraps.

3.1 The Core

According to the definition of the Core, the model is represented as a Labeled
Directed Graph. Each model element such as nodes and edges can have labels.
Attributes of the model elements are represented by these labels. Since the
attribute structure of the edges follows the same rules applied to nodes, the same
labeling method is used for both nodes and edges. We define the following labels
on each model entity X: (i) X;p (a globally unique ID of the model element), (ii)
Xareta (ID of the meta-entity definition), (iii) Xy e (list of concrete values),
(iv) Xattributes (list of contained attributes).

Definition 1. The superuniverse || of a state 2 of the Dynamic Multi-Layer
Algebra consists of the following universes: (i) Upgyo; (containing logical values
{true/false}), (ii) Unymber (containing rational numbers {Q} and a special sym-
bol representing infinity), (ili) Ugtring (containing character sequences of finite
length), (iv) Usp (containing all the possible entity IDs), (v) Upggsic (containing
elements from {Upoor U Unumber UUstring UUID}).

Additionally, all universes contain a special element, undef, which refers to
an undefined value. The labels of the entities take their values from the following
universes: (i) X;p (Urp), (i) Xareta (Urp), (iii) Xvaiwe (UBasicl]), (iv) Xaseriv
(Urnl])-

Entity definitions are based on the above mentioned labels for forming 4-
tuples. Besides these tuples, the Core also defines basic functions to manipulate
the model graph, for example, they can create new model entities or query
existing ones. Generally, in ASM-based approaches, functions are used to rule

A bootstrap for multi-layer metamodeling Gergely Mezei et. al.

how one can change states in the ASM. In DMLA, we rely on shared and derived
functions. The current attribute configuration of a model item is represented
using shared functions. The values of these functions are modified either by
the algebra itself, or by the environment of the algebra. Derived functions
represent calculations which cannot change the model; they are only used to
obtain and to restructure existing information. The vocabulary) of DMLA is
assumed to contain the following characteristic functions: (i) Meta(U;p): Urp,
(ii) Value(UID, UNumber): UBasic and (iii) Attrib(U[D, UNumber): Urp. The
functions are used to access the values stored in the corresponding labels. Note
that the functions are not only able to query the requested information, but
they can also update it. For example, one can update the meta definition of an
entity by simply assigning new value to the Meta function.

Moreover, there are two derived functions: (i) Contains(U;p Urp): Upeol
and (ii) DeriveFrom(U;p,Usp): Upgee. The first function takes an ID of an
entity, the ID of an attribute and checks if the entity contains the attribute. The
second function checks whether the entity identified by the first parameter is an
instantiation, also transitively, of the entity specified by the second parameter.

3.2 The Bootstrap

The functions of the ASM make it possible to query and change the model.
However based only on these constructs, it may be hard to use the algebra
(especially in the case of a self-describing multi-level architecture) due to the
apparent lack of basic, built-in constructs. This issue will be resolved by adding
the Bootstrap to DMLA. Before discussing the Bootstrap in detail, we first
briefly introduce the main concepts.

3.2.1 Main concepts

Instantiation in DMLA means gradual constraining and thus has several pe-
culiarities. Hence, whenever a model entity claims another entity as its meta,
the framework automatically validates if there is indeed a valid instantiation
between the two entities. However, unlike other modeling approaches, the rules
of valid instantiation is not encoded in an external programming language (e.g.
Java), it is though modeled by the Bootstrap. Therefore, both the main valida-
tion logic and also the constraints used by the validation, like checking type and
cardinality conformance [10] can be easily modeled within the Bootstrap. Since
the modeled validation logic defines the DMLA’s inherent instantiation seman-
tics, the instantiation itself is bootstrap dependent. The Operations needed for
encoding the concrete validation logic are modeled by their abstract syntax tree
(AST) representation as 4-tuples within the Bootstrap as well.

In DMLA, the multi-level behavior is supported by fluid metamodeling, that
is, instantiation is rather independent of metamodel design until a model can
be assumed to be valid. More precisely, each modeled entity can refer to any
other entity along the meta-hierarchy, unless cross-level referencing is found to
be contradictory to the validation rules.

Gergely Mezei et. al. A bootstrap for multi-layer metamodeling

Entities may have attributes referred to as slots, describing a part of the
entity, similarly to classes having properties in object-oriented programming.
Each slot originates from a meta-slot defining the constraints it must take into
consideration. When instantiating the entity, all slots are to be validated against
their meta-slots. This is how DMLA checks the modeled type and cardinality
constraints on the slots by the Bootstrap. Moreover, the Bootstrap can be
extended with other application dependent constraints as well.

Besides gradually narrowing the constraints imposed on a slot, DMLA en-
ables the division of a slot into several instances similarly to entities, where one
can create many instances of a meta-entity within its cardinality constraint. For
example a general purpose meta-slot Components can be instantiated to Dis-
play, CPU and HardDrive. Moreover, it is also possible to omit a slot completely
during the instantiation if that does not contradict the cardinality constraint.

Another important feature of DMLA is that fluid metamodeling is supported
at the slot level as well, namely, when an entity is being instantiated, one can
decide which of the slots are being instantiated and which are merely cloned,
that is being copied to the instance without any modifications. It means that
one can keep some of the slots intact while the others are being concretized. Note
that this behavior clearly reflects DMLA’s way of modeling: one can gradually
tighten the constraints on certain parts of the model without having to impose
any unrelated obligations on other parts of the model which may not be known
at that time.

The main entities of the Bootstrap are depicted in Figure 1.

ECTITES 0 ST

Statement OpDefinition Constraint
corgna e —— I
Expression LnAIRY OpSignature

TypeConstr

Figure 1: Main entities of the Bootstrap

3.2.2 Base

In the Bootstrap, the entity Base is the origin of all other entities. Base does
not have a meta-entity. Since validation is based on checking the rules of the
meta, this means that the definition of Base itself is exempt from validation due
to its obvious existence as the root of the meta-level hierarchy. More precisely,
the meta entity of Base is the value undef known from the ASM universes. The
validation rules are always obtained from the meta and undef returns an empty

A bootstrap for multi-layer metamodeling Gergely Mezei et. al.

set at this point, which means that Base is verified against an empty set of
validation rules, thus it is always valid.

Base grants three different features for its instances: (i) the ability to have
slots, (ii) the ability to have constraints and (iii) it also defines the basic vali-
dation formulae. The first two features are granted by containing the SlotDef
and the ConstraintContainer entity directly, meaning that instances of Base
can have instances of these two entities, i.e. concrete slots and constraints. It
is important that SlotDef and ConstraintContainer are directly contained by
Base, and not by wrapping them into a slot. This is a necessity since if a slot
that describes the ability to have slots had been defined it would have resulted
in a circular self-reference that could not be resolved. The situation is similar in
the case of constraints, which are mainly used in customizing the instantiation
of slots. In other words, in DMLA, a concept must not be defined by itself.
Note, however, that this does not mean that Base itself cannot have slots or
constraint at all. Once SlotDef and ConstraintContainer are there, Base can
use these definitions. More precisely, in DMLA, instantiation has no meaning
of precedence or succession, that is, the entities reference to each other and
validation checks an ASM snapshot of entities against validation rules that have
being modeled as slots of validation formulae.

This leads to the third feature of Base: the basics of validation. According
to the definition of Base, each entity may have an alpha, a beta, and a gamma
validation formula. The formulae are defined as operations and are stored in
slots. Instances may refine these formulae, but each entity is validated against
all of its meta-entities. This means that the formulae may be extended making
it more rigorous, but they cannot be further relaxed. The validation formulae of
Base are rather simple, they enforce that all attributes of an entity must have an
appropriate meta attribute in its direct meta-entity. This rule applies for directly
contained attributes (e.g. SlotDef in Base) and also for slots (i.e. wrapped,
extended attributes). The main difference is that slots may also have additional
constraints attached to them. The validation in Base calls the validation of these
additional constraints as well to ensure the validity of the given slot. However,
checking the cardinality or the type of the value of the slot is not part of the
validation in Base. More precisely, these checks are performed by calling the
Cardinality/Type constraints, provided they are attached to the slots.

Moreover, in the current version of the Bootstrap, Base has a slot called
CanContainValue. This slot is used to distinguish entities that can contain a
value (in Value label of 4-tuple) and those that cannot. Validation is part of
the validation formulae of Base, and it is triggered by the value of the slot.
However, since there are only two entities (SlotDef and ConstraintContainer)
that have this slot set to true, we plan to remove the slot in future versions and
encode the ability directly in the validation formulae of Base.

3.2.3 Slots and their constraints

Once Base is defined, we can define the entity SlotDef that is a direct instance of
Base. Although the relation between the two entities are circular (Base contains

Gergely Mezei et. al. A bootstrap for multi-layer metamodeling

SlotDef that is the instance of Base), this does not cause any problem, since
their validation is executed not at once. More precisely, when validating Base,
we can suppose that the definition of SlotDef is valid and vice versa.

SlotDef is a wrapper that can contain a concrete value (CanContainValue
is set to true) and constraints applied on this value. To be able to handle
constraints, SlotDef clones (makes an uninstantiated copy of) the attribute
ConstraintContainer defined in Base. Besides, the validation formulae inher-
ited from Base is extended by forbidding the instantiation slots that have no
constraints on them. The reason behind is that if a slot has no constraints, then
we have no rules at all to validate its value. Recall that in DMLA even type and
cardinality checks are described by slots. This means that slots always have at
least one constraints to obey. Note however that the validation does not apply
to cloning, thus, a slot without attributes can still be cloned and that is what
we take advantage of.

In DMLA, constraints are the key to validation and ConstraintContainer is
the entity used actually to add constraints to entities. From this point of view,
ConstraintContainers are the bridge between the entity and its constraints.
Although we could have attached constraints directly to the entities instead of
wrapping them into a ConstraintContainer, the current handling is easier by
introducing this extra containment level because constraints become separated
by this way. Thus, the role of ConstraintContainer is rather a technical than
a theoretical one. The validation formulae of ConstraintContainer prescribes
that each of them can contain exactly one Constraint as value and also verifies
the rules defining the lifecycle of the constraint as will be explained later. The
entity Constraint is used as the meta-entity of all constraints; it is the instance
of ComplexEntity explained later. At this point, it is important only to know
that Constraint inherits the ability to contain slots from ComplexEntity. In the
case of a constraint, slots are used to customize the behavior. For example, in
the case of CardinalityConstraint, we have two slots: Minimum and Mazimum.

At this point, it is worth to take a closer look at the constraint-based val-
idation of DMLA. In general, alpha and beta validation formulae are used to
describe the instantiation rules of an entity. However, that is not enough in the
case of the constraints, where one must be able to validate the instantiation of
the entity the constraints are attached to besides instantiation of the constraints
themselves. For example, when a type constraint have been instantiated, one
may tighten but must not relax its type parameter e.g. it is allowed to change
from Number to Integers, but not the other way around. However, the same
type constraint, at the same time, must also be able to validate whether the
value of the slot it is associated with belongs to the type specified. Therefore,
having a single pair of alpha-beta formulae is not an efficient solution here. In
order to solve this, constraints have an additional pair of alpha-beta formulae
called ConstraintAlpha and ConstraintBeta. These additional formulae verify
the value of the entity the constraint belongs to. Note that the evaluation of
ConstraintAlpha, and ConstraintBeta cannot be initialized by the constraint it-
self since it needs in-context information (i.e. the entity to validate). In order to
handle this properly, in the Bootstrap, the validation of Base is defined in such

A bootstrap for multi-layer metamodeling Gergely Mezei et. al.

a way that Whenever an entity detects a ConstraintContainer in itself, it also
calls the ConstraintAlpha and ConstraintBeta operations during validation.

In the case of slots, the instantiation can be customized by adding constraints
to the slot. However if the behavior of a constraint would have to be customized,
this option is not available. Although the validation formulae of the constraint
is given, but it is not enough. For a particular constraint (e.g. TypeConstraint),
the rules of instantiation are set, but it is hard to describe the rules of the
lifecycle of the constraint. For example, one is allowed to omit TypeConstraint
of a slot ounly if the slot has a concrete value (and it is not instantiated any
further). It is very hard to describe such a behavior by the alpha formulae.

Therefore, the Bootstrap defines constraints on constraints. Similarly to the
definition of Base, one should not define that a Constraint may have Constraints
in it, since it would result in self-reference. Nevertheless, by our experience in
DMLA, such a general, highly flexible solution is not needed at all. Instead it
is enough to define lifecycle-based validators, which are similar to constraints,
but their flexibility is more limited. In order to support this feature, Con-
straints have a list of life cycle validators (similarly to constraints in a slot)
and a third pair of alpha-beta validation formulae referred to as LifeCycleAlpha
and LifeCycleBeta to invoke these validator operations. The evaluation of the
LifeCycleAlpha and LifeCycleBetha formulae are managed by the Constraint-
Container which is wrapping the Constraint.

3.2.4 Entity and further instances

By having the definition of Base, SlotDef and Constraint, all basic structural
elements are there. Next, Entity is a direct instance of Base. Entity is used as
a semantic ancestor of primitive and complex types. Primitive types represent
the basic types of the underlying ASM universes, while complex types are used
in practical scenarios to represent all kinds of domain specific types. The role of
Entity is important due to the type constraints. Namely, without Entity, there
were not a common ancestor for the types, thus the modelers would have to
decide every time between the above two type options (basic and custom types)
whenever a new slot is being defined. Such a kind of a restriction would have
been very annoying.

PrimitiveEntity is an instance of Entity, it has an instance to each dedicated
universe of the ASM (e.g. Number, String, Bool). It is important to clarify that
the instances of PrimitiveEntity are used in TypeConstraints and not as a value
holder. For example, if we have a slot Name, then the value of the slot will be
“John”; while the value of the type parameter of its TypeConstraint will be the
entity String.

ComplexEntity is practically the origin of all user entities. It is a direct
instance of Entity and has a general-purpose slot (Children) that can later be
used to model all kinds of features. The cardinality constraint of the slot allows
creating any number of instance of the slot, while the type constraint allows any
type available (by setting the type parameter to Base). Based on ComplexEn-
tity, DMLA has a highly flexible, but at the same time highly customizable and

Gergely Mezei et. al. A bootstrap for multi-layer metamodeling

rigorous entry point for modeling. There are three built-in constraints in the
Bootstrap: the type, cardinality and operation signature constraints, all of them
are instances of the Constraint. A common setting for all three constraint types
is that they are marked as permanent by using a LifeCycle Validator. Being per-
manent means that the constraint can be omitted only if all other constraints
are omitted, meaning that the slot has been set to its final form of instantiation.

3.2.5 Type, Cardinality and Operation Signature

The TypeConstraint is used to validate a concrete value of a slot against a type
given at the slot definition. It has the IsInclusive flag meaning that it should
or should not accept a value that is the specified type itself. For example, the
TypeConstraint defines the slot to accept type Bicycle. If the IsInclusive flag
is set, the value Bicycle is accepted as well its instances. The alpha validation
of TypeConstraint checks if the type parameter is not relaxed, while the Con-
straintAlpha validation verifies the value of the slot against the type parameter.
Note that the validation defined by ConstraintAlpha is activated (checked) only
when the value of the slot is set.

The CardinalityConstraint is used to customize the cardinality of the in-
stances of an entity or a slot. The constraint has a Minimum and a Mazimum
parameter. Similarly to TypeConstraint, the alpha validation of the constraint
ensures that if an existing cardinality is overwritten (refined), then it should not
relax the original condition. For example, if the original maximum parameter
is already set to a concrete value, it cannot be overwritten to infinity. Unlike in
the case of TypeConstraint, the ConstraintAlpha, and ConstraintBeta formulae
are activated even if the concrete value of the associated slot is not set yet. This
is necessary since if an entity has a slot and the slot is divided into several slots
during instantiation, then the lower and upper limits of the instance slots have
to be accumulated. For example a Machine may have 1..200 Components and
one of its instances, a Keyboard, may have 99..109 Buttons, an optional Cord
(0..1) and a PlasticBody (1..1), so calculation of the lower and upper limits
results in (99+0+1..109+1+1).

The OperationSignature constraint is used to validate the signature of oper-
ations. The constraint contains three slots: the return type, the context type
and a slot to define parameters. Although it may be thought that a simple
TypeConstraint is enough for all of the parameters, it is not. The difference
is that more information is needed about the type. For example, the return
type of an operation may be the ID of an entity, or it can also be an array of
values. Therefore, instead of setting the type parameter of the given TypeCon-
straint directly to the type expected, wrapping it by a so-called Variable Type
entity is needed. Variable Type can wrap both usual type information and also
the additional information mentioned above. The validation formulae of Oper-
ationSignature work similarly to the formulae of TypeConstraints, restriction is
allowed during instantiation and ConstraintAlpha/Beta is triggered only if the
value of the slot is set.

A bootstrap for multi-layer metamodeling Gergely Mezei et. al.

3.2.6 AST entities

By now, all modeling entities that are strictly required for modeling the static
structure of metamodels have already been introduced, nevertheless the Boot-
strap does contain more. One of the unique features of DMLA is that it has
a built-in operation language, which makes the underlying ASM functionality
available for the Bootstrap. This means that the expressions and statements
composing an operation are also defined as entities in the Bootstrap. In order
to achieve this, every language element has a corresponding entity and when
operation is defined, its abstract syntax tree is build from the instances of these
entities. For example, all conditional statements refer to If as their meta. In
order to simplify the writing of operations, we have developed a script language
called DMLAScript. DMLAScript is pure syntactic sugar around 4-tuples, the
scripts written in DMLAScript are translated to entities (structural and AST)
composed of 4-tuples and later evaluated in a Java executor for carrying out the
validation. Note that although the current executor implementation is based on
Java, the concepts of DMLA are not, thus it is possible to port it to another lan-
guages such as C#£, or JavaScript. We have chosen Java only since it was easy
to connect a Java-based executor to the XText-based DMLAScript workbench.

3.2.7 Other entities

Besides the aforementioned entities, the Bootstrap contains many technical el-
ements, but these elements do not alter or extend the basic mechanisms of
DMLA. Although the Bootstrap has been created only as a proof-of-concept,
we did successfully used it in many practical use cases including the Bicycle chal-
lenge. Minor fixes and extensions were required, but so far, DMLA’s principal
concepts has been still withstanding the test of time.

4 Conclusion

Self-defining language environments always tend to be more flexible and more
consistent than environments defined by an external language. Multi-level mod-
eling is a potential solution for the industrial challenges of model-based software
engineering in the age of Industry 4.0. Creating an approach that could support
both multi-level metamodeling and has a completely self-describing bootstrap
would be very advantageous from many practical perspectives. Our novel ap-
proach, the Dynamic Multi-Layer Algebra (DMLA) aims at this goal.

The paper has introduced the core concepts of DMLA and elaborated the
basic building blocks of its standard Bootstrap in detail. We do believe that
by having been discussing the details behind DMLA’s formal foundation and
its entity hierarchy within the Bootstrap it has become clear how flexible yet
rigorous multi-level modeling can be done.

In the future, we plan to streamline the Bootstrap and optimize it. Self-
validation plays a key role here, since DMLA has a fix point by it self-validation
design: whenever modeling errors may occur during bootstrap modifications

Gergely Mezei et. al. A bootstrap for multi-layer metamodeling

they will be caught as models get automatically invalid if self-validation cannot
be kept self-consistent.

Acknowledgments

The research has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collabora-
tions Grounding Innovation in Informatics and Infocommunications).

References

(1]

2]
13l
4]

[5]

[6]

17l

18]

9]

[10]

G. Casaccio, S. Ducasse, L. Fabresse, J.-B. Arnaud, and B. Van Ryseghem,
“Bootstrapping a Smalltalk,” in Smalltalks, (Buenos Aires, Argentina),
Nov. 2011.

A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and M. Denker,
Pharo by Example. Square Bracket Associates, 2009.

“Omg metaobject facility.” http://www.omg.org/mof/, 2005. Accessed:
2019-03-20.

F. Campagne and F. Campagne, The MPS Language Workbench, Vol. 1.
USA: CreateSpace Independent Publishing Platform, 1st ed., 2014.

A. Prinz. and A. Shatalin., “How to bootstrap a language workbench,” in
Proceedings of the 7th International Conference on Model-Driven Engineer-
ing and Software Development - Volume 1: MODELSWARD,, pp. 347-354,
INSTICC, SciTePress, 2019.

“Dmla webpage.” https://www.aut.bme.hu/Pages/Research/VMTS/DMLA,
2019. Accessed: 2019-04-20.

D. Urban, G. Mezei, and Z. Theisz, “Formalism for static aspects of dy-
namic metamodeling,” Periodica Polytechnica Electrical Engineering and
Computer Science, vol. 61, no. 1, pp. 34-47, 2017.

D. Urban, Z. Theisz, and G. Mezei, “Self-describing operations for multi-
level meta-modeling,” in Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD
2018, Funchal, Madeira - Portugal, January 22-24, 2018., pp. 519-527,
2018.

R. Boerger, Egon; Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

Z. Theisz, D. Urban, and G. Mezei, “Constraint modularization within
multi-level meta-modeling,” in Information and Software Technologies -
23rd International Conference, ICIST 2017, Druskininkai, Lithuania, Oc-
tober 12-14, 2017, Proceedings, pp. 292-302, 2017.

